1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Butoxors [25]
2 years ago
11

A rocket takes off from Earth's surface, accelerating straight up at 69.2 m/s2. Calculate the normal force (in N) acting on an a

stronaut of mass 87.4 kg, including his space suit. (Assume the rocket's initial motion parallel to the +y-direction. Indicate the direction with the sign of your answer.)
Physics
1 answer:
goldenfox [79]2 years ago
7 0

According to Newton's 3rd law, there will be equal and opposite force on the astronaut which is  -6048 N

<h3>What does Newton's third law say ?</h3>

The law state that in every action, there will be equal and opposite reaction.

Given that a rocket takes off from Earth's surface, accelerating straight up at 69.2 m/s2. We are to calculate the normal force (in N) acting on an astronaut of mass 87.4 kg, including his space suit.

Let us first calculate the force involved in the acceleration of the rocket by using the formula

F = ma

Where mass m = 87.4 kg, acceleration a = 69.2 m/s2

Substitute the two parameters into the formula

F = 87.4 x 69.2

F = 6048.08 N

According to the Newton's 3rd law, there will be equal and opposite force on the astronaut.

Therefore, the normal force acting on the astronaut is -6048 N approximately

Learn more about forces here: brainly.com/question/12970081

#SPJ1

You might be interested in
What task requires the most work, lifting a 12-kg sack 2 meters or lifting a 25-kg sack 1 meter?
MrMuchimi

Multiply the masses by the respective distances:

(12 kg) (2 m) = 24 J

(25 kg) (1 m) = 25 J

so the heavier bag takes more work to lift, and (b) is the answer.

(d) is technically correct if the sacks are carrying different contents whose masses are not equal, but since we don't know what's inside each sack, assume 12 kg and 25 kg are the masses of each sack *and* their contents.

5 0
3 years ago
A person travels by car from one city to another with different constant speeds between pair of cities. She drives for 36 min at
Softa [21]

 Change minutes to hrs, divide by 60:
30 min = .50 hrs
45 min = .75 hrs
12 min = .20 hrs
----------------
total + 1.45 hrs, total travel time
:

let a = average speed for the trip
:
Write a dist equation, dist = speed * time
:
80(.5) + 100(.20) + 40(.75) = 1.45a
40 + 20 + 30 = 1.45a
90 = 1.45a
a =
a = 62.069 km/h, for the entire trip
and
90 km is the total distance 

3 0
3 years ago
What current flows through a 2.56-cm-diameter rod of pure silicon that is 20.0 cm long, when 1.00 ✕ 103 V is applied to it? (Suc
vfiekz [6]

Answer:

Current, I = 0.0011 A

Explanation:

It is given that,

Diameter of rod, d = 2.56 cm

Radius of rod, r = 1.28 cm = 0.0128 m

The resistivity of the pure silicon, \rho=2300\ \Omega-m

Length of rod, l = 20 cm = 0.2 m

Voltage, V=1\times 10^3\ V

The resistivity of the rod is given by :

R=\rho\dfrac{L}{A}

R=2300\ \Omega-m\dfrac{0.2\ m}{\pi (0.0128\ m)^2}

R = 893692.30 ohms

Current flowing in the rod is calculated using Ohm's law as :

V = I R

I=\dfrac{V}{R}

I=\dfrac{10^3\ V}{893692.30\ \Omega}

I = 0.0011 A

So, the current flowing in the rod is 0.0011 A. Hence, this is the required solution.

6 0
3 years ago
PLEASE HELP!!!
crimeas [40]

Answer: potential to kinetic/mechanical

Explanation:

5 0
3 years ago
Light of wavelength 476.1 nm falls on two slits spaced 0.29 mm apart. What is the required distance from the slits to the screen
stich3 [128]

Answer:

The distance is D  =  2.6 \ m

Explanation:

From the question we are told that

    The wavelength of the light is  \lambda  =  476.1 \ nm  =  476.1 *10^{-9} \ m

      The  distance between the slit is  d =  0.29 \  mm  =  0.29 *10^{-3} \ m

       The  between the first and second dark fringes is  y =  4.2 \ mm  =  4.2 *10^{-3} \ m

Generally  fringe width is mathematically represented as

       y  =  \frac{\lambda * D }{d}

Where D is the distance of the slit to the screen

   Hence

        D  =  \frac{y *  d}{\lambda }

substituting values

       D  =  \frac{ 4.2 *10^{-3} *   0.29 *10^{-3}}{ 476.1 *10^{-9} }

        D  =  2.6 \ m

7 0
3 years ago
Other questions:
  • Winston stands on the edge of a building's flat roof, 12 m above the ground, and throws a 147.0-g baseball straight down. the ba
    6·1 answer
  • A long, thin solenoid has 155 turns per meter and radius 1 m. The current in the solenoid is increasing at a uniform rate of 28
    8·1 answer
  • Which equation best describes the law of conservation of momentum?
    11·2 answers
  • Leila drove to the mountains last weekend. There was heavy traffic on the way there, and the trip took 10 hours. When Leila drov
    13·1 answer
  • One way to measure g on another planet or moon by remote sensing is to measure how long it takes an object to fall a given dista
    9·1 answer
  • Please help, only answer if your 1000% correct im in summer school and need to pass this class
    15·2 answers
  • The graph shows the amplitude of a pausing wave over time in secondo (o).
    13·2 answers
  • Standard unit definition​
    9·2 answers
  • Which would take longer to cool off by 50 degrees, 1 kg of Copper or 1 kg of liquid water?
    11·2 answers
  • Why is the importance and need of environmental science increasing in today world ​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!