Answer:
- R = ( 4.831 m , 1.469 m )
- Direction of R relative to the x axis= 16°54'33'
Explanation:
Knowing the magnitude and directions relative to the x axis, we can find the Cartesian representation of the vectors using the formula

where
its the magnitude and θ.
So, for our vectors, we will have:


and


Now, we can take the sum of the vectors




This is R in Cartesian representation, now, to find the magnitude we can use the Pythagorean theorem





To find the direction, we can use




As we are in the first quadrant, this is relative to the x axis.
True
Most photographs will be made using a shutter speed of 1/60 or faster.
Well, st first we should find <span>initial momentum for the first person represented in the task which definitely must be :
</span>

And then we find the final one :

Then equate them together :
So we can get the velocity, which is

In that way, according to the main rules of <span>conservation of momentum you can easily find the solution for the second person.
Regards!</span>
Answer:
Explanation:
a) Energy stored in spring = 1/2 k x² = .5 x k 0.1²
500 = 5 x 10⁻³ k ,
k = (500/5) x 10³ = 10⁵ N/m
b )
k = 4.5 x 10¹ = 45 N/m
Stored energy = 1/2 k x² = .5 x 45 x 8² x 10⁻⁴ =1440 x 10⁻⁴ J
This energy gets dissipated by friction .
work done by friction = μ mg d
d is the distance traveled under friction
so 1440 x 10⁻⁴ = μ x 3 x 9.8 x 2
μ = 245 x 10⁻⁴ or 0.00245 which appears to be very small. .
Answer:
The magnitude of the force of friction equals the magnitude of my push
Explanation:
Since the crate moves at a constant speed, there is no net acceleration and thus, my push is balanced by the frictional force on the crate. So, the magnitude of the force of friction equals the magnitude of my push.
Let F = push and f = frictional force and f' = net force
F - f = f' since the crate moves at constant speed, acceleration is zero and thus f' = ma = m (0) = 0
So, F - f = 0
Thus, F = f
So, the magnitude of the force of friction equals the magnitude of my push.