Answer:
C) The variable x represents the independent variable.
Step-by-step explanation:
The given function is
.
g(x) is NOT the multiplication of g and x because g is a function of x.
is the input of the function.
is the output of the function.
The variable
is called the independent variable because we plug in values of x to find g.
The variable g represents the output of the function NOT the input.
The correct choice is C
Answer:The set fee would be $15
Explanation:The set fee is the starting value. This means that it is the value of the y at x = 0 (y-intercept).
To get the set fee, we would first need to get the equation of the line.
Equation of the linear line has the following general formula:
y = mx + c
where m is the slope and c is the y-intercept
1- getting the slope:we are given two points which are:
(20,25) and (50,40)
the slope =

The equation now is:
y = 0.5x + c
2- getting the value of the y-intercept:To get the value of the c, we will use any of the given points, substitute in the equation and solve for c.
I will choose the point (20,25)
y = 0.5x + c
25 = 0.5(20) + c
25 = 10 + c
c = 15
The equation of the line representing the scenario is:y = 0.5x + 15
Now, we know that the value of the c is the y-intercept which is the initial value of the function at x=0.
In our situation, this represents the set fee.
Hope this helps :)
Answer:
The probability that at least 280 of these students are smokers is 0.9664.
Step-by-step explanation:
Let the random variable <em>X</em> be defined as the number of students at a particular college who are smokers
The random variable <em>X</em> follows a Binomial distribution with parameters n = 500 and p = 0.60.
But the sample selected is too large and the probability of success is close to 0.50.
So a Normal approximation to binomial can be applied to approximate the distribution of X if the following conditions are satisfied:
1. np ≥ 10
2. n(1 - p) ≥ 10
Check the conditions as follows:

Thus, a Normal approximation to binomial can be applied.
So,

Compute the probability that at least 280 of these students are smokers as follows:
Apply continuity correction:
P (X ≥ 280) = P (X > 280 + 0.50)
= P (X > 280.50)

*Use a <em>z</em>-table for the probability.
Thus, the probability that at least 280 of these students are smokers is 0.9664.
Answer:
8
Step-by-step explanation: