Answer:
1.53 s
Explanation:
Initially vertical component of velocity of the ball, uy = 7.5 m/s
Net displacement is vertical direction is zero, Δy =0
Use second equation of motion:
Δy = uy t + 0.5 a t²
Here, acceleration a = -g (g =9.8 m/s²)
Substitute all the values and solve for g
0 = 7.5 t -0.5 (9.8)t²
7.5 t = 4.9 t²
t = 1.53 s
Answer:
the heart would fail to efficiently pump oxygenated blood to the body and lungs
Explanation:
Velocity = displacement / time
v = √((58 m)² + (135 m)²) / (12 min × 60 s/min)
v = 0.20 m/s
Answer:
Solubility increases with temperature.
Explanation:
-Increasing temperatures, increases the kinetic energy that allows solvent molecules to more effectively break apart the solute molecules.
-This solute molecules are held together by intermolecular attractions which weakens in higher temperatures.
-Solubility therefore increases with increasing temperatures.
Answer:
if we measure the change in height of the gas within the had and obtain a straight line in relation to the depth we can conclude that the air complies with Boye's law.
Explanation:
The air in the tube can be considered an ideal gas,
P V = nR T
In that case we have the tube in the air where the pressure is P1 = P_atm, then we introduce the tube to the water to a depth H
For pressure the open end of the tube is
P₂ = P_atm + ρ g H
Let's write the gas equation for the colon
P₁ V₁ = P₂ V₂
P_atm V₁ = (P_atm + ρ g H) V₂
V₂ = V₁ P_atm / (P_atm + ρ g h)
If the air obeys Boyle's law e; volume within the had must decrease due to the increase in pressure, if we measure the change in height of the gas within the had and obtain a straight line in relation to the depth we can conclude that the air complies with Boye's law.
The main assumption is that the temperature during the experiment does not change