They have different accelerations because of their masses. According to Newton's Second Law, an objects acceleration is inversely proportional to its mass. Therefore the object with the larger mass, in this case the gun, will have a smaller acceleration. In the same way, the less massive object, being the bullet, will have a higher acceleration.
Hope this helps :)
Answer:
22.5 m
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 30 m/s
Time (t) = 1.5 s
Final velocity (v) = 0 m/s
Distance (s) =?
The distance to which the car move before stopping from the time the driver applied the brake can be obtained as follow:
s = (u + v)t/2
s = (30 + 0)1.5 / 2
s = (30 × 1.5) / 2
s = 45 / 2
s = 22.5 m
Thus, the car will move to a distance of 22.5 m before stopping from the time the driver applied the brake.
The Action Force of this scenario is the pushing force of the Diver. The Reaction Force is the raft pushing back on the diver.
The Third Law of Motion states that "For every action, there is an equal and opposite reaction." Now when the diver dives off the raft, the raft is also pushing the same amount of force as the diver did as he dives off. The diver will then move forward and the raft on the other hand will move backwards.
The movement of the raft shows the opposite force. It will move backwards depending on how strong the diver will push off on the raft. And the amount of force he pushes on it, the raft will exert the same force so the stronger the force of the diver, the farther he will go because the raft will push him in that same direction as it goes backwards.
Answer:
3: I can´t see the text/image, but it depend on the mass and the force applied to the ball, if both are too high, it will be harder to make a home run. (Second law)
4:It would be easier to make a home run because there is no interruption between the ball and the space the same travels. (Third law)
Explanation:
Answer:
Your question was incomplete so here is the complete question and answer.
Q. When exercising in the heat, which of the following hydration strategies is best for temperature regulation during an event (e.g., 10K race)
a) plain water
b) 5-7 percent glucose solution
c) Glucose polymer solution of 6-8 percent
d) There appears to be no difference among these different forms of hydration techniques relative to temperature regulation.
Ans. d) There appears to be no difference among these different forms of hydration techniques relative to temperature regulation.
Explanation:
Temperature Regulation is an important phenomenon for the person exposed to extreme hot conditions or weather. Exercising in hot conditions increase the body temperature. Greater and intense exercise, greater the production of heat. Then the heat dissipation takes place in the form of excessive sweating which results in dehydration. That was just the brief overview of temperature regulation. Above mentioned techniques are equally good hydration techniques so there is no difference at all. You can have a plain water or glucose solutions of above mentioned percentages.