The work done by the force is 47.1 J
Explanation:
The work done by a force in moving an object is given by
(1)
where
F is the magnitude of the force
d is the distance covered by the object
is the angle between the direction of the force and the motion of the object
In this problem, the force applied to the object is
F = 3.0 N
This force is always tangential to the track: this means that at every instant, the force is parallel to the motion of the object, so

And the distance covered is equal to the circumference of the circle, which is:

where r = 2.5 m is the radius.
Now we can substitute into eq.(1) to find the work done:

Learn more about work:
brainly.com/question/6763771
brainly.com/question/6443626
#LearnwithBrainly
V (speed) = F (frequency) x Wavelength
If we rearrange the formula, making frequency the subject;
F (frequency) = Speed ÷ Wavelength
F = 300,000 m\s x 4.5 e -10m
F = 0.08810409956 Hz
Answer:
V = 3.54 m/s
Explanation:
Using the conservation of energy:

so:

where w is te weigh of kelly, h the distance that kelly decends, m is the mass of kelly and V the velocity in the lowest position.
So, the mass of kelly is:
m = 425N/9.8 = 43.36 Kg
and h is:
h = 1m-0.36m =0.64m
then, replacing values, we get:

Solving for v:
V = 3.54 m/s
Answer:
12 miles per hour
Explanation:
time is equal to speed times distance
Answer:
A. kinetic energy
B. angular velocity
E. angular position
Explanation:
The quantities that cannot be constant if a constant net torque is exerted on an objecta are:
A. Kinetic energy. If a torque is applied, the linear or angular speed will be changing at a rate proportional to the torque, so the kinetic energy will change too.
B. Angular velocity. It will change at a rate equal to the torque.
C. Angular position. If the angular velocity changes, the angular position will change.