1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yanalaym [24]
2 years ago
9

2 (a) A plane from airport A flies 280 km to the east to airport B. The plane then travelled north to airport C, 190 km away. (i

) Sketch the displacement of the plane. (ii) Determine the resultant displacement. [5 marks] [ANS: DIY, DIY, 338 km, 34.16° from north of east]​
Physics
1 answer:
Sonbull [250]2 years ago
8 0

Answer:

See below

Explanation:

280 km   east then 190 km north

Use Pythagorean theorem to find the resultant displacement

d^2 = 280^2 + 190^2

d = 338.4 km

Angle will be    arctan ( 190/280) = 34.16 °

You might be interested in
How can the IMA of a first- class lever be increased?
Dimas [21]
IMA = Ideal Mechanical Advantage

First class lever = > F1 * x2 = F2 * x1

Where F1 is the force applied to beat F2. The distance from F1 and the pivot is x1 and the distance from F2 and the pivot is x2

=> F1/F2 = x1 /x2

IMA = F1/F2 = x1/x2

Now you can see the effects of changing F1, F2, x1 and x2.

If you decrease the lengt X1 between the applied effort (F1) and the pivot,  IMA decreases.

If you increase the length X1 between the applied effort (F1) and the pivot, IMA increases.

If you decrease the applied effort (F1) and increase the distance between it and the pivot (X1) the new IMA may incrase or decrase depending on the ratio of the changes.

If you decrease the applied effort (F1) and decrease the distance between it and the pivot  (X1) IMA will decrease.

Answer: Increase the length between the applied effort and the pivot.
4 0
3 years ago
Read 2 more answers
An automobile of mass 2000 kg moving at 30 m/s is braked suddenly with a constant braking force of 10000 N. How far does the car
saveliy_v [14]

Answer:

The car traveled the distance before stopping is 90 m.

Explanation:

Given that,

Mass of automobile = 2000 kg

speed = 30 m/s

Braking force = 10000 N

For, The acceleration is

Using newton's formula

F = ma

Where, f = force

m= mass

a = acceleration

Put the value of F and m into the formula

-10000 =2000\times a

Negative sing shows the braking force.

It shows the direction of force is opposite of the motion.

a = -\dfrac{10000}{2000}

a=-5\ m/s^2

For the distance,

Using third equation of motion

v^2-u^2=2as

Where, v= final velocity

u = initial velocity

a = acceleration

s = stopping distance of car

Put the value in the equation

0-30^2=2\times(-5)\times s

s = 90\ m

Hence, The car traveled the distance before stopping is 90 m.

6 0
3 years ago
Important result of french revolution
qaws [65]
The french revolution led to many deaths and impacted history because of the amount of life lost
8 0
2 years ago
A uniform plank 8.00 m in length with mass 50.0 kg is supported at two points located 1.00 m and 5.00 m, respectively, from the
andreev551 [17]

To solve the problem it is necessary to use Newton's second law and statistical equilibrium equations.

According to Newton's second law we have to

F = mg

where,

m= mass

g = gravitational acceleration

For the balance to break, there must be a mass M located at the right end.

We will define the mass m as the mass of the body, located in an equidistant center of the corners equal to 4m.

In this way, applying the static equilibrium equations, we have to sum up torques at point B,

\sum \tau = 0

Regarding the forces we have,

3Mg-1mg=0

Re-arrange to find M,

M = \frac{m}{3}

M = \frac{50}{3}

M = 16.67Kg

Therefore the maximum additional mass you could place on the right hand end of the plank and have the plank still be at rest is 16.67Kg

8 0
3 years ago
The gravitational force between two objects will be greatest in which of the following situations?
Kobotan [32]

Answer:

Explanation:

Gravitational law states that, the force of attraction or repulsion between two masses is directly proportional to the product of the two masses and inversely proportional to the square of their distance apart.

So,

Let the masses be M1 and M2,

F ∝ M1 × M2

Let the distance apart be R

F ∝ 1 / R²

Combining the two equation

F ∝ M1•M2 / R²

G is the constant of proportional and it is called gravitational constant

F = G•M1•M2 / R²

So, to increase the gravitational force, the masses to the object must be increased and the distance apart must be reduced.

So, option c is correct

C. Both objects have large masses and are close together.

8 0
2 years ago
Other questions:
  • Plz help me with #4 it’s 15 points!!
    8·1 answer
  • A car moves with an initial velocity of 19 m/s due north. (Part A) Find the velocity of the car after 5.6 s if its acceleration
    10·1 answer
  • Coherent light of frequency 6.32 x 1014 Hz passes through two thin slits and falls on a screen 85.0 cm away. You observe that th
    12·1 answer
  • Room temperature water is placed in an Erlenmyer flask and heated to the boiling point. After the flask is removed from the heat
    6·1 answer
  • Need help with 7 questions I'll give 26 points for the best answer!!
    12·2 answers
  • What is an ethical vacuum?
    8·2 answers
  • A box of mass m is held at rest on a frictionless surface with force F up the ramp. The ramp has an angle
    5·2 answers
  • What would be the difference between kinetic and potential energy​
    6·1 answer
  • the pilot of a new stealth helicopter which has a mass of 15000 kg and was traveling 180 m / s accelerated to 250 m / s in six s
    9·1 answer
  • A student walks 4 blocks east, 7 blocks west, 1 block east and then 2 blocks west in an hour what is their velocity
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!