Answer:
Explanation:
Bobbitt worm ( Eunice aphroditois). This segmented polychaete marine worm can attain lengths of 10 feet. It bristles...
Goliath beetle ( Goliathus species). African goliath beetle ( Goliathus giganteus ). Five species of goliath beetle...
atlas moth ( Attacus atlas). Stop and rest your eyes on this lovely...
Answer:
139.514 metres
Explanation:
Initial velocity of the truck = 6.6 m/s
Acceleration of the truck = 2.8 m/s^2
Time interval = 7.9 s
Therefore we use the formula,
s = ut + 1/2 at^2
*where s(the distance travelled)...u(the initial velocity)...t(the time period)
; s = 6.6(7.9) + 1/2 (2.8)(7.9)^2
; s = 52.14 + 87.374
The distance moved by the truck = 139.514m
Answer:
Explanation:
We shall apply concept of impulse to solve the problem .
Impulse = force x time
impulse = change in momentum
force x time = change in momentum
initial speed u = 24 km/h = 6.67 m /s
final speed v = 65 km/h = 18.05 m /s
change in momentum = m v - mu
= m ( v-u )
= 1350 ( 18.05 - 6.67 )
= 15363 kg m/s
F x 18 = 15363
F = 853.5 N .
Answer:
(a) the observed frequency is 200 Hz
(b) the observed frequency is 188 Hz.
Explanation:
speed of the truck, Vs = 27 m/s
frequency of the truck as it approaches, Fs = 185 Hz
(a) Apply Doppler effect to determine the frequency you will hear.
As the truck approaches you, the observed frequency will be higher than the source frequency because of decrease in distance.
![F_s = F_o [\frac{V}{V_S + V} ]](https://tex.z-dn.net/?f=F_s%20%3D%20F_o%20%5B%5Cfrac%7BV%7D%7BV_S%20%2B%20V%7D%20%5D)
Where;
Fo is the observed frequency which is the frequency you will hear.
V is speed of sound in air

(b) Apply the following formula for a moving observer and a moving source;
](https://tex.z-dn.net/?f=F_o%20%3D%20F_s%5B%5Cfrac%7BV-V_o%7D%7BV%7D%20%5D%28%5Cfrac%7BV%7D%7BV-V_S%7D%20%29)
The observed frequency is negative since you are driving away from the truck and the source frequency is also negative since it is driving towards you.
\\\\F_o = 185[\frac{340-22}{340} ](\frac{340}{340-27} )\\\\F_o = 185(0.9353)(1.0863)\\\\F_o = 188 \ Hz](https://tex.z-dn.net/?f=F_o%20%3D%20F_s%5B%5Cfrac%7BV-V_o%7D%7BV%7D%20%5D%28%5Cfrac%7BV%7D%7BV-V_S%7D%20%29%5C%5C%5C%5CF_o%20%3D%20185%5B%5Cfrac%7B340-22%7D%7B340%7D%20%5D%28%5Cfrac%7B340%7D%7B340-27%7D%20%29%5C%5C%5C%5CF_o%20%3D%20185%280.9353%29%281.0863%29%5C%5C%5C%5CF_o%20%3D%20188%20%5C%20Hz)
Answer:
The magnitude of the applied force is 94.74 N
Explanation:
Mass of the block, m = 11 kg
Angle of inclination of the plane, 
Friction coefficient, 
Now,
Normal force that acts on the block is given by:
(1)
Now, to maintain the equilibrium parallel to ramp the forces must be balanced.
Thus
(2)
From eqn (1) and (2)




F = 94.74 N