To solve this exercise it is necessary to apply the concepts related to Robert Boyle's law where:

Where,
P = Pressure
V = Volume
T = Temperature
n = amount of substance
R = Ideal gas constant
We start by calculating the volume of inhaled O_2 for it:


Our values are given as
P = 1atm
T=293K 
Using the equation to find n, we have:




Number of molecules would be found through Avogadro number, then


Answer:
<h2>
E = 2.8028*10⁻¹⁹ Joules</h2>
Explanation:
The minimum energy needed to eject electrons from a metal with a threshold frequency fo is expressed as E = hfo
h = planck's constant
fo = threshold frequency
Given the threshold frequency fo = 4.23×10¹⁴ s⁻¹
h = 6.626× 10⁻³⁴ m² kg / s
Substituting this value into the formula to get the energy E
E = 4.23×10¹⁴ * 6.626 × 10⁻³⁴
E = 28.028*10¹⁴⁻³⁴
E = 28.028*10⁻²⁰
E = 2.8028*10⁻¹⁹ Joules
The number of turns of wire is directly proportional to voltage.
The higher the number of turns of wire the higher the voltage
Since .
Power (output) of a generator = voltage x current. Therefore the higher the voltage the higher the output of the generator.
So, the higher the number of turns of wire the higher the output of the generator.
Answer:
Yes, there a link between number of bulbs and current drawn from the power pack.
Explanation:
In an Electrical circuit, we have resistors present in that circuit. These resistors can be connected in two ways.
a) Series connection
b) Parallel connection
There is a link or a relationship between number of bulbs and the current drawn from the power pack. This is because the number of bulbs is equivalent to or equal to the number of resistors.
Hence,
a) In a series connection, the link or relationship between the number of bulbs(resistors) is as the number of light bulbs increases, the current in the power pack (circuit) decreases.
b) In a parallel connection, the link or relationship between the number of bulbs(resistors) is as the number of light bulbs increases, the current in the power pack (circuit) increases.