Protons do not move out of the nucleus of atoms although they repel each other.
Remember that protons are particles with positive charge and they held together in the nucleus of the atom which is a tiny tiny region. As you know, like charges repel each other, which means that the protons exert a repulsion force.
Answer:
Given that
speed u=4*10^6 m/s
electric field E=4*10^3 N/c
distance b/w the plates d=2 cm
basing on the concept of the electrostatices
now we find the acceleration b/w the plates to find the horizontal distance traveled by the electron when it hits the plate.
acceleration a=qE/m=
=
m/s
now we find the horizontal distance traveled by electrons hit the plates
horizontal distance
![X=u[2y/a]^{1/2}](https://tex.z-dn.net/?f=X%3Du%5B2y%2Fa%5D%5E%7B1%2F2%7D)
=![4*10^6[2*2*10^{-2}/7*10^{14}]^{1/2}](https://tex.z-dn.net/?f=4%2A10%5E6%5B2%2A2%2A10%5E%7B-2%7D%2F7%2A10%5E%7B14%7D%5D%5E%7B1%2F2%7D)
=
= 3 cm
Answer:
option C
Explanation:
given,
force act on west = 20 lb
force act at 45° east of north = 80 lb
magnitude of force = ?
∑ F y = 80 cos 45⁰
F y = 56.57 lb
magnitude of forces in x- direction
∑ F x = -20 + 80 sin 45⁰
= 36.57 lb
net force
F = 
F = 
F = 67.36 lb≅ 67 lb
hence, the correct answer is option C
As we use the Kinetic energy and the equation is 1/2mv^2, changing its mass will change its speed and its energy. So more mass, more speed more energy. also the gravitational potential energy; mass x gravity x height; more mass and more height more speed as it go down to the slope! Hope it helps!
For any mass m:
a = F/m
v = √2*F/m*s = √2F/sm = k/√m
Momentum = mv = k√m
Energy = 1/ mv² = 1/2 m.k²/m = 1/2k²
SO
Both will have same energy
The larger mass will have greater momentum