Answer: a) 
acid : hydronium ion
base : methoxide ion
conjugate acid : methanol
conjugate base: water
b) 
acid : hydrogen chloride
base : ethoxide ion
conjugate acid : ethanol
conjugate base: chloride ion
c) 
acid : methanol
base : amide ion
conjugate acid : ammonia
conjugate base: methoxide ion
Explanation:
According to the Bronsted-Lowry conjugate acid-base theory, an acid is defined as a substance which looses donates protons and thus forming conjugate base and a base is defined as a substance which accepts protons and thus forming conjugate acid.
The species accepting a proton is considered as a base and after accepting a proton, it forms a conjugate acid.
The species losing a proton is considered as an acid and after loosing a proton, it forms a conjugate base
For the given chemical equation:
a) 
acid : hydronium ion
base : methoxide ion
conjugate acid : methanol
conjugate base: water
b) 
acid : hydrogen chloride
base : ethoxide ion
conjugate acid : ethanol
conjugate base: chloride ion
c) 
acid : methanol
base : amide ion
conjugate acid : ammonia
conjugate base: methoxide ion
.
Answer:
The correct answer is B. Since the two metals have the same mass, but the specific heat capacity of iron is much greater than that of gold, the final temperature of the two metals will be closer to 498 K than to 298 K
Explanation:
Iron is hotter and gold is colder, therefore, according to laws of thermodynamics, iron will lose heat to gold until they are at the same temperature.
The specific heat capacity of iron(0.449) is over three times that of gold(0.128). Since masses are equal, this means that each time iron's temperature drops by one degree, the energy released it releases makes gold's temperature increase by more than 3 degrees. So gold's temperature will be climbing much faster than iron's is falling. Meaning they will meet closer to the initial temperature of iron than that of gold
Answer: The Milky Way is a barred spiral galaxy with a diameter between 150,000 and 200,000 light-years (ly).
Answer:
As the y-intercept increases, the graph of the line shifts up;
As the y-intercept decreases, the graph of the line shifts down
Explanation:
There are two ways to think about this problem. The first way would be the graphical approach:
- if we only change the y-intercept, this means we keep the same slope;
- y-axis is the vertical axis;
- if we change the point at which the line crosses the y-axis, we either shift it upward for a higher y-intercept or downward for a lower y-intercept.
Now, thinking algebraically, a line has the following equation in a general form:

The y-intercept is essentially obtained when x = 0, then:
y = b:
- if we increase b value, the y value increases, so the graph shifts upward;
- if we decrease b value, the y value decreases, so the graph shifts downward.