I am assuming you are talking about Neon. The rate of diffusion is directly proportional to the molar mass of the gas. Since neon has a molar mass of 20.18 grams, the gas must have a lower molar mass and must be a gas at 273 Kelvin. There are several elements that fulfill this criteria: Hydrogen, Helium, Oxygen, Nitrogen, and Fluorine.
The anion<span> is also </span>larger than<span> the </span>atom<span> because of </span>electron-electron repulsion<span>. As more </span>electrons are<span> added to the </span>outer shell<span>, and even to </span>higher<span> principle energy levels, the </span>repulsion<span> bewteen the negatively charged particles grows, pushing the </span>shells<span> farther from the nucleus.</span>
Fe2O3 + 2Al ---> Al2O3 + 2Fe
Mole ratio Fe2O3 : Al = 1:2
No. of moles of Fe2O3 = Mass/RMM = 250 / (55.8 * 2 + 16 * 3) = 1.56641604 moles
No. of moles of Al = 150/27 = 5.555555555 moles.
Mole ratio 1 : 2. 1.56641604 * 2 = 3.13283208 moles of Al, but you have 5.555555555 moles of Al. So Al is in excess. All of it won't react.
So take the Fe2O3 and Fe ratio to calculate the mass of iron metal that can be prepared.
RMM of Fe2O3 / Mass of Fe2O3 = RMM of 2Fe / Mass of Fe 159.6 / 250 = 111.6 / x x = 174.8 g of Fe
All of the above will be affected by air resistance, but the most obvious will be the balloon or leaf.
Hope it helps somewhat!
Answer:
P2= 125.26 Kpa
Explanation:
V1= 489.6 ml=0.4896L
V2= 750 ml= 0.750L
V1= 180 KPa= 180000 Pa
P2= ?
T1= 10 = 10 + 273.15 = 283.15K
T2= 28.7+273.15= 301.85K
180000Pa* 0.4896L/ 283.15K * 301.85K/0.75L
P2= 12526.28553
P2= 125.26 KPa