Answer:
The volume of solution in liters required to make a 0.250 M solution from 3.52 moles of solute is 14.08 liters of solution
Explanation:
The question relates to the definition of the concentration of a solution which is the number of moles per liter (1 liter = 1 dm³) of solution
Therefore we have;
The concentration of the intended solution = 0.250 M
Therefore, the number of moles per liter of the required resolution = 0.250 moles
Therefore, the concentration of the required solution = 0.250 moles/liter
The volume in liters of the required solution that will have 3.52 moles of the solute is given as follows;
The required volume of solution = The number of moles of the solute/(The concentration of the solution)
∴ The required volume of solution = 3.52 moles/(0.250 moles/liter) = 14.08 liters
The required volume of solution to make a 0.250 M solution from 3.52 moles of solute = 14.08 liters.
Therefore the number of liters required to make a 0.250 M solution from 3.52 moles of solute = 14.08 liters.
<span>c. Passing electric charge through the reactants Is the answer to you're question.
</span>
There’s 1024 atoms of sodium in 2 moles of sodium
Explanation:
Substances generally tends to specialize as either oxidizing or reducing agents.
An oxidizing agent is an electron acceptor which causes a co-reactant to be oxidized in a reaction.
Examples are:
Non-metals especially oxygen and the halogens.
Other examples are H₂SO₄ , HNO₃, KMnO₄, K₂Cr₂O₇
learn more:
Oxidizing and reducing agents brainly.com/question/5558762''
#learnwithBrainly
The concentration of hydrogen can be shown as:
[H+ ] = 3 * 10-5 M
pH can be determined as:
pH = - log [H+ ]
= - log (3 * 10-5)
= 4.53
Thus the pH of solution is 4.53