Answer:
See Explanation and image attached
Explanation:
Methane is an alkane. The commonest chemical reaction that alkanes undergo is substitution. During a substitution reaction, one or more atoms of hydrogen is/are replaced in the alkane.
In methane, in the presence of sunlight and molecular chlorine gas, a homolytic fission of Cl2 occurs to yield chlorine radicals in an initiation step.
The propagation steps involve reaction of the methane with chlorine radicals. Certain intermediates continue to be formed along the way until the tetrachlorination product is finally obtained.
Assuming that you mean 10^-4 M then this would be basic and would have a pH of 10.
pOH = -log[OH].
So pOH = 4
pH=14-pOH
pH = 10
Answer:
C.
Explanation:
The arrows represent the Earth spinning on its own axis in this picture.
Answer:
pH = 5.54
Explanation:
The pH of a buffer solution is given by the <em>Henderson-Hasselbach (H-H) equation</em>:
- pH = pKa + log
![\frac{[CH_3COO^-]}{[CH_3COOH]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCH_3COO%5E-%5D%7D%7B%5BCH_3COOH%5D%7D)
For acetic acid, pKa = 4.75.
We <u>calculate the original number of moles for acetic acid and acetate</u>, using the <em>given concentrations and volume</em>:
- CH₃COO⁻ ⇒ 0.377 M * 0.250 L = 0.0942 mol CH₃COO⁻
- CH₃COOH ⇒ 0.345 M * 0.250 L = 0.0862 mol CH₃COOH
The number of CH₃COO⁻ moles will increase with the added moles of KOH while the number of CH₃COOH moles will decrease by the same amount.
Now we use the H-H equation to <u>calculate the new pH</u>, by using the <em>new concentrations</em>:
- pH = 4.75 + log
= 5.54
I believe it is the fourth choice because the producer would use sunlight to make food, then the next choice fhat has anything to do with the producer is [D]. if i’m wrong i’m sorry but I believe that would be the write anwser.