Explanation:
Inertia is the tendency of a body to remain at rest or to do nothing.
It is the resistance to any change in position of body.
When the force on a body increases, the inertia reduces
When the mass is reduced the inertia reduces
According to newton's first law or the law of inertia "an object will remain in its state of rest or of uniform motion unless if it is acted upon by an external force".
Answer:
Δp = -2 p₀
Explanation:
The momentum is defined by
p = m v
In this case we write the initial and final momentum, we take as positive the direction towards the wall.
p₀ = m v
p_f = m (-v)
the negative sign is because the car is bouncing off the wall
the change of the moment is
Δp = p_f - p₀
Δp = - m v - m v
Δp = -2 mv
Δp = -2 p₀
we see that the change of moment is twice the moment, in the attachment we can see the vectors of these changes and the sign indicates the direction of the change at the moment
Which data set has the largest range? A. 55, 57, 59, 60, 61, 49, 48 B. 21, 25, 14, 16, 29, 22, 20 C. 12, 15, 16, 19, 18, 15, 27
Simora [160]
Data D has the largest range.
Data A: 61-48=13
Data B: 29-14=15
Data C:27-12=15
Data D:54-31=23
Therefore, Data D has the largest range.
Answer:
Solution given:
frequency[f]=60,500,000Hz
velocity[V]=300,000,000m/s
wave length=?
we have
wave length=
=
=
=4.96 m
Option A.4.96m
Answer:
The tension in the left side string = 17.21 N
The tension in the right side string = F = 27.3 N
Explanation:
Given that
F= 27.3 N
M= 1.43 kg ,r= 0.0792 m
Moment of inertia of disk ,I = 0.5 m r²
I = 0.5 x 1.43 x 0.0792² = 0.0044 kg.m²
m= 0.7 kg
Lets take linear acceleration of system is a m/s²
Lets take tension in left side string = T
From Newtons law
T- mg = ma
T- 0.7 x 10 = 0.7 a ----------1
(F - T) r = I α
α = Angular acceleration of disk
a = α r
(F - T) r = I α
(F - T) r² = I a
( 27.3 - T) x 0.0792² = 0.0044 a --------2
Form equation 1 and 2
a= 1.42 T - 10 m/s²
a = 1.42 ( 27.3 - T) m/s²
1.42 T - 10 = 38.9 - 1.42 T
T=17.21 N
The tension in the right side string = F = 27.3 N