Answer:
9 volts (assuming 0.60 is in Amperes)
Explanation:
Recall that Ohms law can be expressed as
V = IR, where
V = voltage,
I = current (given as 0.6. I'm going to assume that the units is Amperes because it is not given)
R = resistance (given as 15 ohm)
substituting the above values into the formula
V = IR
V = (0.6)(15)
V = 9 Volts
Answer:
Explanation:
Total length of the wire is 29 m.
Let the length of one piece is d and of another piece is 29 - d.
Let d is used to make a square.
And 29 - d is used to make an equilateral triangle.
(a)
Area of square = d²
Area of equilateral triangle = √3(29 - d)²/4
Total area,

Differentiate both sides with respect to d.

For maxima and minima, dA/dt = 0
d = 8.76 m
Differentiate again we get the

(a) So, the area is maximum when the side of square is 29 m
(b) so, the area is minimum when the side of square is 8.76 m
The acceleration of a body in a gravitational field is independent of its mass. Both the stones will fall with the same acceleration through the same height and hence they will strike the ground simultaneously.
GIVE ME POINTS
Answer:
Micro and radio waves.
Lower energy.
Gamma rays.
Explanation:
The electromagnetic spectrum is the range of frequencies of electromagnetic radiation and their respective wavelengths.
Ionising radiation os defined as the energy required of photons of a wave to ionize atoms, causing chemical reactions.
The energy of the wave depends on both the amplitude and the frequency. If the energy of each wavelength is a discrete packet of energy, a high-frequency wave will deliver more of these packets per unit time than a low-frequency wave. In summary, the longer the wavelength, the lower the energy to ionise.
The velocity of a wave is directly proportional to the frequency of that wave.
c = f * lambda
Where,
c = velocity of the wave
f = frequency of the wave = 1/time
Lambda = wavelength.
From the above expression, the longer the wavelength, lambda the shorter the frequency.
Examples of waves with longer wavelengths are, micro and radio waves, while radiations with shorter wavelengths like gamma rays.
Current flows from High Potential (Positive) to Low potential (Negative)
So, option D is your answer!
Hope this helps!