1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GREYUIT [131]
3 years ago
9

What effect will the following have on the inertia of a body if

Physics
1 answer:
Step2247 [10]3 years ago
7 0

Explanation:

Inertia is the tendency of a body to remain at rest or to do nothing.

It is the resistance to any change in position of body.

 When the force on a body increases, the inertia reduces

 When the mass is reduced the inertia reduces

According to newton's first law or the law of inertia "an object will remain in its state of rest or of uniform motion unless if it is acted upon by an external force".

You might be interested in
(a) (i) Find the gradient of f. (ii) Determine the direction in which f decreases most rapidly at the point (1, −1). At what rat
vitfil [10]

Question:

Problem 14. Let f(x, y) = (x^2)y*(e^(x−1)) + 2xy^2 and F(x, y, z) = x^2 + 3yz + 4xy.

(a) (i) Find the gradient of f.

(ii) Determine the direction in which f decreases most rapidly at the point (1, −1). At what rate is f decreasing?

(b) (i) Find the gradient of F.

(ii) Find the directional derivative of F at the point (1, 1, −5) in the direction of the vector a = 2 i + 3 j − √ 3 k.

Answer:

The answers to the question are

(a) (i)  the gradient of f =  ((y·x² + 2·y·x)·eˣ⁻¹ + 2·y² )i + (x²·eˣ⁻¹+4·y·x) j

(ii) The direction in which f decreases most rapidly at the point (1, −1), ∇f(x, y) = -1·i -3·j is the y direction.

The rate is f decreasing is -3 .

(b) (i) The gradient of F is (2·x+4·y)i + (3·z+4·x)j + 3·y·k

(ii) The directional derivative of F at the point (1, 1, −5) in the direction of the vector a = 2 i + 3 j − √ 3 k is  ñ∙∇F =  4·x +⅟4 (8-3√3)y+ 9/4·z at (1, 1, −5)

4 +⅟4 (8-3√3)+ 9/4·(-5) = -6.549 .

Explanation:

f(x, y) = x²·y·eˣ⁻¹+2·x·y²

The gradient of f = grad f(x, y) = ∇f(x, y) = ∂f/∂x i+  ∂f/∂y j = = (∂x²·y·eˣ⁻¹+2·x·y²)/∂x i+  (∂x²·y·eˣ⁻¹+2·x·y²)/∂y j

= ((y·x² + 2·y·x)·eˣ⁻¹ + 2·y² )i + (x²·eˣ⁻¹+4·y·x) j

(ii) at the point (1, -1) we have  

∇f(x, y) = -1·i -3·j  that is the direction in which f decreases most rapidly at the point (1, −1) is the y direction.  

The rate is f decreasing is -3

(b) F(x, y, z) = x² + 3·y·z + 4·x·y.

The gradient of F is given by grad F(x, y, z)  = ∇F(x, y, z) = = ∂f/∂x i+  ∂f/∂y j+∂f/∂z k = (2·x+4·y)i + (3·z+4·x)j + 3·y·k

(ii) The directional derivative of F at the point (1, 1, −5) in the direction of the vector a = 2·i + 3·j −√3·k

The magnitude of the vector 2·i +3·j -√3·k is √(2²+3²+(-√3)² ) = 4, the unit vector is therefore  

ñ = ⅟4(2·i +3·j -√3·k)  

The directional derivative is given by ñ∙∇F = ⅟4(2·i +3·j -√3·k)∙( (2·x+4·y)i + (3·z+4·x)j + 3·y·k)  

= ⅟4 (2((2·x+4·y))+3(3·z+4·x)- √3∙3·y) = 4·x +⅟4 (8-3√3)y+ 9/4·z at point (1, 1, −5) = -6.549

8 0
3 years ago
Which theory states that if you are forced to smile at an event, you will enjoy it? A. The Schachter-Singer theory B. The Lazaru
Ronch [10]

Answer:

C. The facial feedback theory

Explanation:

The facial feedback theory as postulated by William James and connects back to the famous Charles Darwin talks about how facial expressions stimulate our emotional state of being. Based on this theory, the emotional experiences we have are determined by the looks on our faces.

According to the question, smiling at an event makes you enjoy it is an example of what the The facial feedback theory is explaining. Furthermore, smiling, which is a facial expression causes or stimulates an emotional state of enjoyment in that event.

7 0
3 years ago
what would you want the after life to be like. examples are heaven and hell ,reincarnation ,eternal darkness , reliving your liv
NeTakaya

Answer:

i would want to be a dog or a cat

Explanation:

there just funny

4 0
3 years ago
A weight lifter does 586 J of work on a weight that he lifts in 3.5 seconds. What is the power with which he lifts the weight?
Neko [114]

Answer:

Explanation:

The quantity of energy transferred by a force when it is applied to a body and causes that body to move in the direction of the force work.

7 0
2 years ago
Differentiate between sound waves and seismic waves?
algol13

The only real difference is that common seismic waves travel through the ground and sound waves travel through the air. If you had a pipe attached to granite and you were listening to it, you might detect both.

7 0
3 years ago
Read 2 more answers
Other questions:
  • Your annoying little brother is dropping rocks out of his bedroom window on the 2nd floor. You are on the ground floor and watch
    11·1 answer
  • You have 10 ohm and a 100 ohm resistor in parallel. You place this equivalent resistance in series with an LED, which is rated t
    7·1 answer
  • A periodic longitudinal wave that has a frequency of 19.0 hz travels along a coil spring. if the distance between successive com
    15·1 answer
  • How might spontaneous generation be possible in a reducing environment? Question options: The reducing environment was created b
    10·1 answer
  • A 15 kg mass is moving at 7.50 meters per second on a horizontal, frictionless surface. What is the total work that must be done
    12·1 answer
  • In 1996, NASA performed an experiment called the Tethered Satellite experiment. In this experiment a 4.32 x 104-m length of wire
    6·1 answer
  • Technician A says that low pressure smoke installed in the fuel system can be used to check for leaks. Technicians B says that n
    15·1 answer
  • What is a substance
    5·2 answers
  • 1. As the angle of the ramp is increased, the normal force increases /decreases / remains the same and the friction-force increa
    11·1 answer
  • Dr. Smith is conducting an experiment to determine if paintings of landscapes produce more peaceful feelings than abstract paint
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!