Assuming that the gas acts like an ideal gas, we can
calculate for the final volume using the ideal gas law:
PV = nRT
Where P = pressure, V = volume, n = number of moles, R = gas
constant, and T = temperature
Assuming that P, n, and R are constant throughout the
process, we can define another constant K:
V / T = K where
K = nR / P
Equating the initial and final states:
Vi / Ti = Vf / Tf
Substituting the given values:
11.5 cm^3 / 415 K = Vf / 200 K
Vf = 5.54 cm^3
The acid dissociation constant is 1.3 × 10^-3.
<h3>What is acid-dissociation constant?</h3>
The acid-dissociation constant is a constant that shows the extent of dissociation of an acid in solution. We have to set up the reaction equation as shown below;
Let the acid be HA;
HA + H2O ⇄ H3O^+ + A^-
since the pH of the solution is 2.57 then;
[H3O^+] = Antilog(-pH) = Antilog(-2.57) = 2.7 × 10^-3
We can see that; [H3O^+] = [A^-] so;
Ka = (2.7 × 10^-3)^2/(5.5 × 10^–3)
Ka = 1.3 × 10^-3
Learn more about acid-dissociation constant: brainly.com/question/9728159
The state of atoms in a neon light when light is emitted is loss of energy.
The atmosphere is a mixture of gasses.
in these options not any Element are liquid at 1000k i think you type wrong in first option It is Hg not Ag and Hg is liquid at 1000 k