Answer: Option (c) is the correct answer.
Explanation:
When an acid or base is added to a solution then any resistance by the solution in changing the pH of the solution is known as a buffer.
This is because a buffer has the ability to not get affected by the addition of small amounts of an acid or a base. As a result, it helps in maintaining the pH of the solution.
In the give case, when we add the HCl then more number of protons will dissociate. This causes the acetate to react with the protons and leads to the formation of acetic acid.
We know that acetic acid is a weak acid and it dissociates partially or feebly. Therefore, no change in pH will take place.
Thus, we can conclude that equation
represents the chemical reaction that accounts for the fact that acid was added but there was no detectable change in pH.
Answer:
According to the Lewis concept, an acid is defined as a substance that accepts electron pairs and base is defined as a substance which donates electron pairs. Hence, the correct statement is arrhenius acid produces hydrogen ions in solution.
Answer:
Phenols do not exhibit the same pka values as other alcohols;
They are generally more acidic.
Using the knowledge that hydrogen acidity is directly related to the stability of the anion formed, explain why phenol is more acidic than cyclohexane.
Explanation:
According to Bromsted=Lowry acid-base theory,
an acid is a substance that can release
ions when dissolved in water.
So, acid is a proton donor.
If the conjugate base of an acid is more stable then, that acid is a strong acid.
In the case of phenol,
the phenoxide ion formed is stabilized by resonance.

The resonance in phenoxide ion is shown below:
Whereas in the case of cyclohexanol resonance is not possible.
So, cyclohexanol is a weak acid compared to phenol.
Answer:
It contains 0.105 mole cu
Explanation:
There is different types of salt.
1)table salt
2)lime salt