58.7 %
Please correct me if I’m wrong. :)
It would cause a drop <span>but I am not sure double check other answers </span>
Answer:
1. Theoretical yield = 2.03g
2. Actual yield 1.89g
Explanation:
Let us write a balanced equation. This is illustrated below:
Zn + 2HCI —> ZnCl2 + H2
Molar Mass of HCl = 1 +35.5 = 36.5g/mol
Mass of HCl from the balanced equation = 2 x 36.5 = 73g
Molar Mass of H2 = 2x1 = 2g/mol
1. From the equation,
73g of HCl produced 2g of H2.
Therefore, 74g of HCl will produce = (74 x 2)/73 = 2.03g
Therefore, theoretical yield = 2.03g
2. %yield = 93%
Theoretical yield = 2.03g
Actual yield =?
%yield = Actual yield /Theoretical yield x100
Actual yield = %yield x theoretical yield
Actual yield = 93% x 2.03 = (93/100)x2.03 = 1.89g
Actual yield =1.89g
Answer:
π = 14.824 atm
Explanation:
wt % = ( w NaCL / w sea water ) * 100 = 3.5 %
assuming w sea water = 100 g = 0.1 Kg
⇒ w NaCl = 3.5 g
osmotic pressure ( π ):
∴ T = 20 °C + 273 = 293 K
∴ C ≡ mol/L
∴ density sea water = 1.03 Kg/L....from literature
⇒ volume sea water = 0.1 Kg * ( L / 1.03 Kg ) = 0.097 L sln
⇒ mol NaCl = 3.5 g NaCL * ( mol NaCL / 58.44 g ) = 0.06 mol
⇒ C NaCl = 0.06 mol / 0.097 L = 0.617 M
⇒ π = 0.617 mol/L * 0.082 atm L / K mol * 293 K
⇒ π = 14.824 atm
In a <u>Saturated </u>solution, the rate of dissociation equal to the rate of crystallization
Explanation:
A saturated solution is one than cannot dissolve any more solute because the solutes inter-molecular spaces are filled with the solute molecules at that temperature. When an attempt is made to dissolve more solute into the solution, the rate at which the solute is dissolved into the solution is equal to the rate at which excess solute is precipitated and crystallized.