<em>Labels that belong in the marked ares X, Y & Z include;</em>
X: Curves outward
Y: Image may be smaller than object
Z: Image is always virtual
<u>Since the rays never meet, the images formed by convex mirrors are always virtual and smaller than the object, and since they are smaller, the images appear to be further than they actually are.</u>
Answer:
The object will travel 675 m during that time.
Explanation:
A body moves with constant acceleration motion or uniformly accelerated rectilinear motion (u.a.r.m) when the path is a straight line, but the velocity is not necessarily constant because there is an acceleration.
In other words, a body performs a u.a.r.m when its path is a straight line and its acceleration is constant. This implies that the speed increases or decreases uniformly.
In this case, the position is calculated using the expression:
x = xo + vo*t + ½*a*t²
where:
- x0 is the initial position.
- v0 is the initial velocity.
- a is the acceleration.
- t is the time interval in which the motion is studied.
In this case:
- x0= 0
- v0= 0 because the object is initially stationary
- a= 6

- t= 15 s
Replacing:
x= 0 + 0*15 s + ½*6
*(15s)²
Solving:
x=½*6
*(15s)²
x=½*6
*225 s²
x= 675 m
<u><em>
The object will travel 675 m during that time.</em></u>
D) A gallon of gasoline definitely. Gas is like, if not a chemical. It will have the most.
~Silver
What you need to know is that the force is
F=ma
The force is the product of mass and acceleration
this means that the acceleration is
a=F/m
a) The force is halved?
this means that f will be

now:
a=

So the accelaration will also he halved (it's the original acceleratation divided by 2)
b) The object's mass is halved?
a=

=a=

which is the original acceleration times two!! so it will double
c) The force and the object's mass are both halved?
now we have
a=

=a=

=a=

so they will cancel each other out and the acceleration will stay the same!