Answer:
The gravitational acceleration of a planet of mass M and radius R
a = G*M/R^2.
In this case we have:
G = 6.67 x 10^-11 N (m/kg)^2
R = 2.32 x 10^7 m
M = 6.35 x 10^30 kg
Now we can compute:
a = (6.67*6.35/2.32^2)x10^(-11 + 30 - 2*7) m/s^2 = 786,907.32 m/s^2
The acceleration does not depend on the mass of the object.
Definition formula for momentum: P = mv
So P(A) = 0.45 * 50 = 22.5 kgm/s
P(B) = 0.45 * 80 = 36 kgm/s
P(C) = 0.45 * 25 = 11.25 kgm/s
B has the greatest momentum
Answer:
The Resultant Induced Emf in coil is 4∈.
Explanation:
Given that,
A coil of wire containing having N turns in an External magnetic Field that is perpendicular to the plane of the coil which is steadily changing. An Emf (∈) is induced in the coil.
To find :-
find the induced Emf if rate of change of the magnetic field and the number of turns in the coil are Doubled (but nothing else changes).
So,
Emf induced in the coil represented by formula
∈ =
...................(1)
Where:
.
{ B is magnetic field }
{A is cross-sectional area}
.
No. of turns in coil.
.
Rate change of induced Emf.
Here,
Considering the case :-
&
Putting these value in the equation (1) and finding the new emf induced (∈1)
∈1 =
∈1 =
∈1 =![4 [-N\times\frac{d\phi}{dt}]](https://tex.z-dn.net/?f=4%20%5B-N%5Ctimes%5Cfrac%7Bd%5Cphi%7D%7Bdt%7D%5D)
∈1 = 4∈ ...............{from Equation (1)}
Hence,
The Resultant Induced Emf in coil is 4∈.
Answer:
1) Current decreases; 2) Inverse proportionally; 3) 1[A]
Explanation:
1)
As we can see as the resistance increases the current decreases, if we take two points as an example, when the resistance is equal to 50 [ohms] the current is equal to 1[amp] and when the resistance is equal to 200 [ohms] the current tends to have a value below 0.5 [amp]. Thus demonstrating the decrease in current.
2)
Inverse proportionally, by definition we know that the law of ohm determines the voltage according to resistance and amperage. This is the voltage will be equal to the product of the voltage by the resistance.
![V=I*R\\V = voltage [volts]\\I = current[amp]\\R = resistance [ohms]](https://tex.z-dn.net/?f=V%3DI%2AR%5C%5CV%20%3D%20voltage%20%5Bvolts%5D%5C%5CI%20%3D%20current%5Bamp%5D%5C%5CR%20%3D%20resistance%20%5Bohms%5D)
where:

And whenever we have in a fractional number the denominator the variable we are interested in, we can say that this is inversely proportional to the value we are interested in determining. In this case, we can see from the two previous expressions that both the current and the resistance appear in the denominator, therefore they are inversely proportional to each other.
3)
If we place ourselves on the graph on the resistance axis, we see that at 50 [ohm] will correspond a current value equal to 1 [A].