Answer:
3,5-dimethyl-2-octene
Explanation:
The parent chain will be choosen based on the highest value. In this case, if we count from top to bottom, we'll get seven carbon, however if we count from the second carbon, going left and then down, we'll get eight carbon. So the parent chain is octene
The double bond is located at the second carbon and the methyl groups are located on carbon 3 & 5. Since there are two methyl groups, we add di- in front of methyl to indicate two methyl groups present.
Note: The functional group has to be prioritise and it needed to be a part of the parent chain. In this case, the functional group is the double bond. (alkene)
Mass is not conserved in chemical reactions. Mass is therefore never conserved because a little of it turns into energy in every reaction
Given:
M = 0.0150 mol/L HF solution
T = 26°C = 299.15 K
π = 0.449 atm
Required:
percent ionization
Solution:
First, we get the van't Hoff factor using this equation:
π = i MRT
0.449 atm = i (0.0150 mol/L) (0.08206 L atm / mol K) (299.15 K)
i = 1.219367
Next, calculate the concentration of the ions and the acid.
We let x = [H+] = [F-]
[HF] = 0.0150 - x
Adding all the concentration and equating to iM
x +x + 0.0150 - x = <span>1.219367 (0.0150)
x = 3.2905 x 10^-3
percent dissociation = (x/M) (100) = (3.2905 x 10-3/0.0150) (100) = 21.94%
Also,
percent dissociation = (i -1) (100) = (</span><span>1.219367 * 1) (100) = 21.94%</span>
The answer should be Pure substance