Science is a continuous profession of study because new ideas are produced based on new evidence. Also, there are different topics of science such as climate change or new cures to different diseases.
Answer:
1.7 * 10^-5
Explanation:
1- get the number of moles of PbCl2:
number of moles = mass / molar mass
number of moles = 0.45 / 278.1 = 1.618 * 10^-3 moles
2- get the concentration of Pb2+:
molarity = number of moles of solute / volume of solution in liters
molarity = (1.618 * 10^-3) / (0.1) = 0.0162 M
3- getting concentration of Cl-:
<span>PbCl2(s) <==> Pb2+(aq) + 2Cl-(aq)
</span>We can note that:
For a certain amount of Pb2+ formed, twice this amount of Cl- is formed.
This means that:
for 0.0162 M of Pb2+, 2*0.0168 = 0.0324 M of Cl- is formed
4- getting Ksp:
Ksp = [Pb2+][Cl-]²
Ksp = (0.0162)*(0.0324)²
Ksp = 1.7 * 10^-5
Hope this helps :)
Using a stove to heat up water.
Answer:
See explanation
Explanation:
A word equation tries to depict a chemical reaction in words. Letters rather than only chemical formulas are used to show the reaction equation.
Now we want to write a word equation that shows the reaction of sodium hydroxide solution and aluminium sulphate solution:
Alumunium sulphate + sodium hydroxide ------>Aluminium hydroxide + sodium sulphate
Answer:
17.65 grams of O2 are needed for a complete reaction.
Explanation:
You know the reaction:
4 NH₃ + 5 O₂ --------> 4 NO + 6 H₂O
First you must know the mass that reacts by stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction). For that you must first know the reacting mass of each compound. You know the values of the atomic mass of each element that form the compounds:
- N: 14 g/mol
- H: 1 g/mol
- O: 16 g/mol
So, the molar mass of the compounds in the reaction is:
- NH₃: 14 g/mol + 3*1 g/mol= 17 g/mol
- O₂: 2*16 g/mol= 32 g/mol
- NO: 14 g/mol + 16 g/mol= 30 g/mol
- H₂O: 2*1 g/mol + 16 g/mol= 18 g/mol
By stoichiometry, they react and occur in moles:
- NH₃: 4 moles
- O₂: 5 moles
- NO: 4 moles
- H₂O: 6 moles
Then in mass, by stoichiomatry they react and occur:
- NH₃: 4 moles*17 g/mol= 68 g
- O₂: 5 moles*32 g/mol= 160 g
- NO: 4 moles*30 g/mol= 120 g
- H₂O: 6 moles*18 g/mol= 108 g
Now to calculate the necessary mass of O₂ for a complete reaction, the rule of three is applied as follows: if by stoichiometry 68 g of NH₃ react with 160 g of O₂, 7.5 g of NH₃ with how many grams of O₂ will it react?

mass of O₂≅17.65 g
<u><em>17.65 grams of O2 are needed for a complete reaction.</em></u>