What is being done in shaping is that it directs and guides the change in one's behavior. Therefore, what will happen when one undergoes shaping is that you encourage a lot of minor behaviors which would add up to one large action. The answer to this would be the first option.
The statement shows a case of rotational motion, in which the disc <em>decelerates</em> at <em>constant</em> rate.
i) The angular acceleration of the disc (
), in revolutions per square second, is found by the following kinematic formula:
(1)
Where:
- Initial angular speed, in revolutions per second.
- Final angular speed, in revolutions per second.
- Time, in seconds.
If we know that
,
y
, then the angular acceleration of the disc is:


The angular acceleration of the disc is
radians per square second.
ii) The number of rotations that the disk makes before it stops (
), in revolutions, is determined by the following formula:
(2)
If we know that
,
y
, then the number of rotations done by the disc is:

The disc makes 3.125 revolutions before it stops.
We kindly invite to check this question on rotational motion: brainly.com/question/23933120
Answer:
0.5 A
Explanation:
N = 20, A = 50 cm^2 = 50 x 10^-4 m^2, dB = 6 - 2 = 4 T, dt = 2 s, R = 0.4 ohm
The induced emf is given by
e = - N dФ/dt
Where, dФ/dt is the rate of change of magnetic flux.
Ф = B A
dФ/dt = A dB/dt
so,
e = 20 x 50 x 10^-4 x 4 / 2 = 0.2 V
negative sign shows the direction of magnetic field.
induced current, i = induced emf / resistance = 0.2 / 0.4 = 0.5 A