I believe it is called an ampere.
Answer:
1 bright fringe every 33 cm.
Explanation:
The formula to calculate the position of the m-th order brigh line (constructive interference) produced by diffraction of light through a diffraction grating is:

where
m is the order of the maximum
is the wavelength of the light
D is the distance of the screen
d is the separation between two adjacent slit
Here we have:
is the wavelength of the light
D = 1 m is the distance of the screen (not given in the problem, so we assume it to be 1 meter)
is the number of lines per mm, so the spacing between two lines is

Therefore, substituting m = 1, we find:

So, on the distant screen, there is 1 bright fringe every 33 cm.
Density = (mass) / (volume)
4,000 kg/m³ = (mass) / (0.09 m³)
Multiply each side
by 0.09 m³ : (4,000 kg/m³) x (0.09 m³) = mass
mass = 360 kg .
Force of gravity = (mass) x (acceleration of gravity)
= (360 kg) x (9.8 m/s²)
= (360 x 9.8) kg-m/s²
= 3,528 newtons .
That's the force of gravity on this block, and it doesn't matter
what else is around it. It could be in a box on the shelf or at
the bottom of a swimming pool . . . it's weight is 3,528 newtons
(about 793.7 pounds).
Now, it won't seem that heavy when it's in the water, because
there's another force acting on it in the upward direction, against
gravity. That's the buoyant force due to the displaced water.
The block is displacing 0.09 m³ of water. Water has 1,000 kg of
mass in a m³, so the block displaces 90 kg of water. The weight
of that water is (90) x (9.8) = 882 newtons (about 198.4 pounds),
and that force tries to hold the block up, against gravity.
So while it's in the water, the block seems to weigh
(3,528 - 882) = 2,646 newtons (about 595.2 pounds) .
But again ... it's not correct to call that the "force of gravity acting
on the block in water". The force of gravity doesn't change, but
there's another force, working against gravity, in the water.
Answer:
29.412m/s
Explanation:
where F= force, m= mass, and a=acceleration
we also know that,
a = Δv / t where Δv = change in velocity and t = time
thus F = m ( Δv / t)

Δv
29.412m/s=Δv
Answer:
Energy transformation is when energy changes from one form to another – like in a hydroelectric dam that transforms the kinetic energy of water into electrical energy. While energy can be transferred or transformed, the total amount of energy does not change – this is called energy conservation.
Explanation:
Hope This Helps!!
God Bless!!
~DuffyDuck~