Answer:

Explanation:
We are given that
Diameter=d=
Thickness=
Radius=
Using 
Dielectric constant=8
Resistance =
Internal specific resistance=r=100 ohm cm=
Using 1 m=100 cm
Internal resistance per unit length=
Using 
Internal resistance per unit length=
Answer:
29.96m/s
Explanation:
Given parameters:
Initial speed = 25.5m/s
Acceleration = 1.94m/s²
Time = 2.3s
Unknown:
Final speed of the car = ?
Solution:
To solve this problem, we are going to apply the right motion equation:
v = u + at
v is the final speed
u is the initial speed
a is the acceleration
t is the time taken
Now insert the parameters and solve;
v = 25.5 + (1.94 x 2.3) = 29.96m/s
As we know that range of the projectile motion is given by

here we know that range will be same for two different angles
so here we can say the two angle must be complementary angles
so the two angles must be

so it is given that one of the projection angle is 75 degree
so other angle for same range must be 90 - 75 = 15 degree
so other projection angle must be 15 degree
Answer: only the third option. [Vector A] dot [vector B + vector C]
The dot between the vectors mean that the operation to perform is the "scalar product", alson known as "dot product".
This operation is only defined between two vectors, not one scalar and one vector.
When you perform, in the first option, the dot product of any ot the first and the second vectors you get a scalar, then you cannot make the dot product of this result with the third vector.
For the second option, when you perform the dot product of vectar B with vector C you get a scalar, then you cannot make the dot product ot this result with the vector A.
The third option indicates that you sum the vectors B and C, whose result is a vector and later you make the dot product of this resulting vector with the vector A. Operation valid.
The fourth option indicates the dot product of a scalar with the vector A, which we already explained that is not defined.