BC=19
Explanation
Step 1
ABE
triangle ABE is rigth triangle, then let
![\begin{gathered} Angle=60 \\ adjacentside=BE \\ opposit\text{ side(the one in front of the angle)= AB=}\frac{19\sqrt[]{6}}{4} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20Angle%3D60%20%5C%5C%20adjacentside%3DBE%20%5C%5C%20opposit%5Ctext%7B%20side%28the%20one%20in%20front%20of%20the%20angle%29%3D%20AB%3D%7D%5Cfrac%7B19%5Csqrt%5B%5D%7B6%7D%7D%7B4%7D%20%5Cend%7Bgathered%7D)
so, we need a function that relates, angle, adjancent side and opposite side
![\tan \theta=\frac{opposite\text{ side}}{\text{adjacent side}}](https://tex.z-dn.net/?f=%5Ctan%20%5Ctheta%3D%5Cfrac%7Bopposite%5Ctext%7B%20side%7D%7D%7B%5Ctext%7Badjacent%20side%7D%7D)
replace
![\begin{gathered} \tan \theta=\frac{opposite\text{ side}}{\text{adjacent side}} \\ \tan 60=\frac{AB}{\text{BE}} \\ \text{cross multiply} \\ \text{BE}\cdot\tan \text{ 60=AB} \\ \text{divide both sides by tan 60} \\ \frac{\text{BE}\cdot\tan\text{ 60}}{\tan\text{ 60}}=\frac{\text{AB}}{\tan\text{ 60}} \\ BE=\frac{\text{AB}}{\tan\text{ 60}} \\ \text{if AB=}\frac{19\sqrt[]{6}}{4} \\ BE=\frac{\frac{19\sqrt[]{6}}{4}}{\sqrt[]{3}} \\ BE=\frac{19\sqrt[]{6}}{4\sqrt[]{3}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Ctan%20%5Ctheta%3D%5Cfrac%7Bopposite%5Ctext%7B%20side%7D%7D%7B%5Ctext%7Badjacent%20side%7D%7D%20%5C%5C%20%5Ctan%2060%3D%5Cfrac%7BAB%7D%7B%5Ctext%7BBE%7D%7D%20%5C%5C%20%5Ctext%7Bcross%20multiply%7D%20%5C%5C%20%5Ctext%7BBE%7D%5Ccdot%5Ctan%20%5Ctext%7B%2060%3DAB%7D%20%5C%5C%20%5Ctext%7Bdivide%20both%20sides%20by%20tan%2060%7D%20%5C%5C%20%5Cfrac%7B%5Ctext%7BBE%7D%5Ccdot%5Ctan%5Ctext%7B%2060%7D%7D%7B%5Ctan%5Ctext%7B%2060%7D%7D%3D%5Cfrac%7B%5Ctext%7BAB%7D%7D%7B%5Ctan%5Ctext%7B%2060%7D%7D%20%5C%5C%20BE%3D%5Cfrac%7B%5Ctext%7BAB%7D%7D%7B%5Ctan%5Ctext%7B%2060%7D%7D%20%5C%5C%20%5Ctext%7Bif%20AB%3D%7D%5Cfrac%7B19%5Csqrt%5B%5D%7B6%7D%7D%7B4%7D%20%5C%5C%20BE%3D%5Cfrac%7B%5Cfrac%7B19%5Csqrt%5B%5D%7B6%7D%7D%7B4%7D%7D%7B%5Csqrt%5B%5D%7B3%7D%7D%20%5C%5C%20BE%3D%5Cfrac%7B19%5Csqrt%5B%5D%7B6%7D%7D%7B4%5Csqrt%5B%5D%7B3%7D%7D%20%5Cend%7Bgathered%7D)
Step 2
BED
again, we have a rigth triangle,then let
![\begin{gathered} \text{Hypotenuse}=BD \\ \text{adjacent side= BE=6.71} \\ \text{angle}=\text{ 45} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Ctext%7BHypotenuse%7D%3DBD%20%5C%5C%20%5Ctext%7Badjacent%20side%3D%20BE%3D6.71%7D%20%5C%5C%20%5Ctext%7Bangle%7D%3D%5Ctext%7B%2045%7D%20%5Cend%7Bgathered%7D)
so, we need a function that relates; angle, hypotenuse and adjacent side
![\cos \theta=\frac{adjacent\text{ side}}{\text{hypotenuse}}](https://tex.z-dn.net/?f=%5Ccos%20%5Ctheta%3D%5Cfrac%7Badjacent%5Ctext%7B%20side%7D%7D%7B%5Ctext%7Bhypotenuse%7D%7D)
replace.
![\begin{gathered} \cos \theta=\frac{adjacent\text{ side}}{\text{hypotenuse}} \\ \cos 45=\frac{6.71}{\text{BD}} \\ BD=\frac{6.71}{\cos \text{ 45}} \\ BD=\frac{\frac{19\sqrt[]{6}}{4\sqrt[]{3}}}{\frac{\sqrt[]{2}}{2}} \\ BD=\frac{38\sqrt[]{6}}{4\sqrt[]{6}} \\ BD=\frac{38}{4} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Ccos%20%5Ctheta%3D%5Cfrac%7Badjacent%5Ctext%7B%20side%7D%7D%7B%5Ctext%7Bhypotenuse%7D%7D%20%5C%5C%20%5Ccos%2045%3D%5Cfrac%7B6.71%7D%7B%5Ctext%7BBD%7D%7D%20%5C%5C%20BD%3D%5Cfrac%7B6.71%7D%7B%5Ccos%20%5Ctext%7B%2045%7D%7D%20%5C%5C%20BD%3D%5Cfrac%7B%5Cfrac%7B19%5Csqrt%5B%5D%7B6%7D%7D%7B4%5Csqrt%5B%5D%7B3%7D%7D%7D%7B%5Cfrac%7B%5Csqrt%5B%5D%7B2%7D%7D%7B2%7D%7D%20%5C%5C%20BD%3D%5Cfrac%7B38%5Csqrt%5B%5D%7B6%7D%7D%7B4%5Csqrt%5B%5D%7B6%7D%7D%20%5C%5C%20BD%3D%5Cfrac%7B38%7D%7B4%7D%20%5Cend%7Bgathered%7D)
Step 3
finally BDE
let
angle=30
opposite side= BD
use sin function
![\begin{gathered} \sin \theta=\frac{opposite\text{ side}}{\text{hypotenuse}} \\ \text{replace} \\ \sin \text{ 30=}\frac{BD}{BC} \\ BC\cdot\sin 30=BD \\ BC=\frac{BD}{\sin \text{ 30}} \\ BC=\frac{\frac{38}{4}}{\frac{1}{2}} \\ BC=\frac{76}{4}=19 \\ BC=19 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Csin%20%5Ctheta%3D%5Cfrac%7Bopposite%5Ctext%7B%20side%7D%7D%7B%5Ctext%7Bhypotenuse%7D%7D%20%5C%5C%20%5Ctext%7Breplace%7D%20%5C%5C%20%5Csin%20%5Ctext%7B%2030%3D%7D%5Cfrac%7BBD%7D%7BBC%7D%20%5C%5C%20BC%5Ccdot%5Csin%2030%3DBD%20%5C%5C%20BC%3D%5Cfrac%7BBD%7D%7B%5Csin%20%5Ctext%7B%2030%7D%7D%20%5C%5C%20BC%3D%5Cfrac%7B%5Cfrac%7B38%7D%7B4%7D%7D%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%5C%5C%20BC%3D%5Cfrac%7B76%7D%7B4%7D%3D19%20%5C%5C%20BC%3D19%20%5Cend%7Bgathered%7D)
so, the answer is 19
I hop
He has about 28 fiction books. Since 312 divided by 11 is equal to <span>28.3636363636, you can't have a decimal number for the amount of books, so you round down to 28. </span>
The answer is c. 78 square inches.
- you take both 4 and 9, multiply them by 3 which would give you 12 and 27. then you add 27 twice and 12 twice, together and get 78.
Answer:
An equation is used when we have paired sets of data to describe how the values in one pair change when we alter the values in the other set.
On the other hand, a series gives a general formula of determining the value of the nth observation when the values have been arranged in increasing order
Step-by-step explanation:
An equation such as; y = 3x+5 models the relation between the response variable y and the predictor variable x. It tells us how y changes when x is altered by a certain magnitude. The value 3 is described as the slope while 5 is the y-intercept.
On the other hand, a series such as; score = 2 + 3n provides a general formula that can be used to determine the score of the nth individual in a sample or population.