Answer:
m =
x,
graph of x vs m
Explanation:
For this exercise, the simplest way to determine the mass of the cylinder is to take a spring and hang the mass, measure how much the spring has stretched and calculate the mass, using the translational equilibrium equation
F_e -W = 0
k x = m g
m =
x
We are assuming that you know the constant k of the spring, if it is not known you must carry out a previous step, calibrate the spring, for this a series of known masses are taken and hung by measuring the elongation (x) from the equilibrium position, with these data a graph of x vs m is made to serve as a spring calibration.
In the latter case, the elongation measured with the cylinder is found on the graph and the corresponding ordinate is the mass
The law applied here is Newton's first law, also known as, law of inertia.
This law states that: A body will retain its state of rest or motion unless acted upon by an external force.
If you are moving and the bus suddenly stops, your body will lurch forward trying to retain its state of motion until it comes to rest and changes its state by the external force acted on it.
If you are at rest and the bus suddenly moves, your body will lurch backwards trying to retain its state of rest and opposing the force of motion until it is forced to change its state by this force.
Answer:
0.036J
Explanation:
Given parameters:
Spring constant , K = 92N/m
Compression = 2.8cm = 0.028m
Unknown:
Potential energy = ?
Solution:
To solve this problem;
P.E =
K e²
K is the spring constant
e is the compression
so;
P.E =
x 92 x 0.028² = 0.036J
The law of reflection states that the angle of reflection is equal to the angle of Incidence .
39.2 m/s
Since 9.8 is the acceleration of gravity times 4 gives you 39.2