To develop this problem we will apply the concepts related to the kinematic equations of motion, specifically that of acceleration. Acceleration can be defined as the change of speed in an instant of time, mathematically this is

If a mobile is decreasing its speed (it is slowing down), then its acceleration is in the opposite direction to the movement. This would imply that the acceleration vector is opposite to the velocity vector.
Therefore the correct answer is B.
Steps : The formula for wavelength is:
λ = v/f
λ = 1482/100
Answer:
λ = 14.82 m
Answer:
2.28
Explanation:
From mirror formula,
1/f = 1/u+1/v .......... Equation 1
Where f = focal length of the mirror, v = image distance, u = object distance.
Note: The focal length mirror is positive.
make v the subject of the equation,
v = fu/(u-f)............ Equation 2
Given: f = 2.5 cm, u = 1.4 cm
Substitute into equation 2
v = 2.5(1.4)/(1.4-2.5)
v = 3.5/-1.1
v = -3.2 cm.
Note: v is negative because it is a virtual image.
But,
Magnification = image distance/object distance
M = v/u
Where M = magnification.
Given: v = 3.2 cm, u = 1.4 cm
M = 3.2/1.4
M = 2.28.
Thus the magnification of the tooth = 2.28.