<h3>Answer:</h3>
The Alkane formed is 5,5-dibromo-2,2,3-trimethylhexane. as shown below in attached scheme (Green Color).
<h3>Explanation:</h3>
Alkynes like Alkenes undergo <em>Electrophillic Addition Reactions</em>. The reaction given is a two step reaction. In step 1, the Alkyne adds first equivalent of HBr obeying <em>Markovnikov's rule</em> (i.e. Bromine will add to carbon containing less number of hydrogen atoms) and forms <em>2-bromo-4,5,5-trimethylhex-1-ene</em>. In step 2, the alkene formed in first step (2-bromo-4,5,5-trimethylhex-1-ene) undergoes addition reaction with the second equivalent of HBr via Markovnikov's rule to produce <em>5,5-dibromo-2,2,3-trimethylhexane</em>.
The scheme is attached below, Blue color is assigned to starting Alkyne, Red color is assigned to intermediate Alkene and Green color is assigned to product Alkane respectively.
You would be most likely to use a slicing machine if you were using the <u>icebox </u>method to produce cookies.
In the icebox method a type of cookie in which the dough is made, rolled into a stick, and refrigerated until the dough hardens. The dough can be removed from the refrigerator, cut into individual pieces, and then baked. The rest of the dough is returned to the refrigerator until needed.
Icebox method, also known as refrigerator cookies, are sliced and baked cookies. The dough is formed into logs, chilled in the refrigerator (also called an icebox), sliced , and then baked.
Learn more about the Icebox method here,
https://brainly.in/question/1513677
#SPJ4
Answer:
The significance of "Er" in the diagram is :
B.) Threshold energy for reaction
Explanation:
Threshold energy : It is total amount of energy required by the reactant molecule to reach the transition state .
Activation energy : It is the excess energy absorbed by the molecules to reach the transition state.
<u>Activation Energy = Threshold Energy - Average Kinetic Energy</u>
<u>This means Activation energy decreases on increasing kinetic energy</u>
On increasing Temperature average kinetic energy of the molecule increases which reduces the activation energy and the reaction occur faster in that case.
Catalyst also reduces the Activation energy.
<u>Er = Threshshold energy for reaction at 30 degree</u>
<u>Ea = Activation Energy</u>
<u>The given figure shows that the threshold energy decreases on increasing the temperature</u>
<u>Only the molecule having energy greater than Er can react to form product</u>
If the temperature is increased then reaction will shift to the left because heat is absorbed.
<h3>What is equilibrium state?</h3>
Equilibrium of any reaction is that state in which concentration of reactant and concentration of product will be constant.
Given chemical reaction is:
A(g) + 2B(g) ⇄ C(g) + D(g)
From the equilibrium state reaction will move only that side which will contribute to maintain the stable state. In the forward reaction heat is released as mention in the question. So, when the temperature of reaction is increased then it shifts towards the left side by absorbing the heat and maintain the stability.
Hence, option (2) is correct, i.e. It will shift to the left because heat is absorbed.
To know more about equilibrium, visit the below link:
brainly.com/question/14297698
Answer:
A
Explanation:
if the earth slows down then that will give more time to the sun meaning days/nights will be longer