1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleksandr-060686 [28]
3 years ago
14

Draw the product that is formed when the compound shown below is treated with an excess of hydrogen gas and a platinum catalyst.

hexene

Chemistry
1 answer:
loris [4]3 years ago
5 0
<span>When the hexene is treated with an excess of hydrogen gas and a platinum catalyst, the product formed is hexane.

Hexene is an unsaturated hydrocarbon. Hexene when treated with H2 gas, in presence with Pt catalyst, the double bond is broken. This results in generation of saturated hydrocarbon i.e. hexane. </span>

You might be interested in
Calculate the pH and fraction of dissociation ( α ) for each of the acetic acid ( CH 3 COOH , p K a = 4.756 ) solutions. A 0.002
marysya [2.9K]

Answer:

The degree of dissociation of acetic acid is 0.08448.

The pH of the solution is 3.72.

Explanation:

The pK_a=4.756

The value of the dissociation constant = K_a

pK_a=-\log[K_a]

K_a=10^{-4.756}=1.754\times 10^{-5}

Initial concentration of the acetic acid = [HAc] =c = 0.00225

Degree of dissociation = α

HAc\rightleftharpoons H^++Ac^-

Initially

c

At equilibrium ;

(c-cα)                                cα        cα

The expression of dissociation constant is given as:

K_a=\frac{[H^+][Ac^-]}{[HAc]}

1.754\times 10^{-5}=\frac{c\times \alpha \times c\times \alpha}{(c-c\alpha)}

1.754\times 10^{-5}=\frac{c\alpha ^2}{(1-\alpha)}

1.754\times 10^{-5}=\frac{0.00225 \alpha ^2}{(1-\alpha)}

Solving for α:

α = 0.08448

The degree of dissociation of acetic acid is 0.08448.

[H^+]=c\alpha = 0.00225M\times 0.08448=0.0001901 M

The pH of the solution ;

pH=-\log[H^+]

=-\log[0.0001901 M]=3.72

3 0
3 years ago
PLEASE HELP ASAP
erma4kov [3.2K]

In the so called rain shadow effect we have interaction between all of the four major Earth spheres. When we have a coastal region where there's a high mountain range, the part of the mountain that is facing the sea will differ a lot from the part of the mountain that is on the other side. The water from the sea evaporates. The water vapor makes the air wet. The warm and wet air masses from the sea will come to the coastline, once they reach the mountain they will start to accumulate as they can not pass through it. As they accumulate rainfall appears. The rainfall contributes to a lush vegetation on this side of the mountain (windward side). The rain shadow effect appears on the leeward side of the mountain, and it mostly gets dry, strong, downward winds. These conditions result in drier climate, much less vegetation, and much increased erosion. Thus we can easily see that we have in this case interaction between the hydrosphere (the sea and the rainfall), the geosphere (the ground, soil, rocks), biosphere (the vegetation), and atmosphere (the winds, the clouds).

6 0
3 years ago
How does a sciences form a hypothesis
Oduvanchick [21]

they try to ask themselves why certain things happen and they try to make an educated guess of what will happen.

7 0
2 years ago
Read 2 more answers
Americans combined drive about 4.0 x 109 kilometers a day and get an average of 20 miles per gallon of gasoline. For each kilogr
Nimfa-mama [501]

Answer:

303,882.84649 kg\times 3=9.12\times 10^5 kg of carbon dioxide gas.

Explanation:

Average distance covered by Americans in a day= 4.0\times 10^9 km

1 day = 24 × 60 min = 1,440 min

Average distance covered by Americans in a minute= \frac{4.0\times 10^9 km}{1,440}=2,777,777.78 km

Average mileage of the car = 20 miles/gal = 32.18 km/gal

1 mile = 1.609 km

20 miles = 20 × 1.609 km = 32.18 km

Volume of gasoline used in minute = \frac{2,777,777.78 km}{32.18 km/gal}

V=86,320.00 gal

V=86,320.00\times 3.7854 L

(1 L = 1000 mL)

V=86,320.00\times 3.7854 \times 1000 mL=326,755,748.91 mL

Mass of 86,320.00 gallons of gasoline = m

Density of the gasoline = d = 0.93 g/cm^3=0.93 g/mL

1 mL= 1 cm^3

m=d\times V=0.93 g/mL\times 326,755,748.91 mL

m=303,882,846.49 g=303,882.84649 kg

1 kilogram of gasoline gives 3 kg of carbon dioxde gas .

Then 303,882.84649 kg of gasoline will give :

303,882.84649 kg\times 3=9.12\times 10^5 kg of carbon dioxide gas.

8 0
3 years ago
109kPa = _________ mm Hg
LekaFEV [45]

817.567 mm hg the answer for number 2

3 0
3 years ago
Other questions:
  • What mass of CaSO3 must have been present initially to produce 14.5 L of SO2 gas at a temperature of 12.5°C and a pressure of 1.
    11·1 answer
  • What is a material which cannot be broken down or changed into another substance using chemical matters?
    13·1 answer
  • NH4+ (aq) + NO2- (aq) → N2 (g) + H2O (l) Experiment [NH4+]i [NO2-]i Initial rate (M/s) 1 0.24 0.10 7.2 x 10-4 2 0.12 0.10 3.6 x
    11·1 answer
  • What is the stereochemistry of the alcohol produced in the reaction of (S)-3-iodoheptane with NaOH?
    7·1 answer
  • Identify the outer electron configurations for the (a) alkali metals, (b) alkaline earth metals, (c) halogens, (d) noble gases.
    10·1 answer
  • How do valence electrons interact between non polar covalent, polar covalent, and ionic bonds?​
    9·1 answer
  • The angle between the horizon and the sun is <br>a.large <br>b.small<br>at both sunrise and sunset​
    8·2 answers
  • How many moles of iron is 3.011 x 10^27 atoms of iron? Please show work if possible
    11·1 answer
  • In the ocean, there are small fish that live in and around the mouths of large sharks. The shark does not harm the fish because
    11·2 answers
  • For the reaction below, if the rate of appearance of Br2 is 0.180 M/s, what is the rate of disappearance of
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!