Answer:
emf generated by cell is 2.32 V
Explanation:
Oxidation: 
Reduction: 
---------------------------------------------------------------------------------
Overall: 
Nernst equation for this cell reaction at
-
![E_{cell}=E_{cell}^{0}-\frac{0.059}{n}log{[Al^{3+}]^{2}[I^{-}]^{6}}](https://tex.z-dn.net/?f=E_%7Bcell%7D%3DE_%7Bcell%7D%5E%7B0%7D-%5Cfrac%7B0.059%7D%7Bn%7Dlog%7B%5BAl%5E%7B3%2B%7D%5D%5E%7B2%7D%5BI%5E%7B-%7D%5D%5E%7B6%7D%7D)
where n is number of electrons exchanged during cell reaction,
is standard cell emf ,
is cell emf ,
is concentration of
and
is concentration of 
Plug in all the given values in the above equation -
![E_{cell}=2.20-\frac{0.059}{6}log[(4.5\times 10^{-3})^{2}\times (0.15)^{6}]V](https://tex.z-dn.net/?f=E_%7Bcell%7D%3D2.20-%5Cfrac%7B0.059%7D%7B6%7Dlog%5B%284.5%5Ctimes%2010%5E%7B-3%7D%29%5E%7B2%7D%5Ctimes%20%280.15%29%5E%7B6%7D%5DV)
So, 
Use a magnet to separate the iron from the sand.
The gas particles squeeze closer together
Answer:c
Explanation:
I think because ca^+2
It’s loses the ion and if u look back u would see that a cation is a t charge but it’s not Goan that electron it’s losing that electron