Answer:
Explanation:
Please, find the image with the pictured molecule for this question attached.
The molecule has one oxygen atom (red) covalently bonded to one hydrogen atom (light grey), one nitrogen atom (blue) covalently bonded to two hydrogen atoms (light grey), and two carbon atoms (dark grey) bonded each to two hydrogen atoms (light grey).
<em>Hydrogen bondings</em> are intermolecular bonds (bonds between atoms of two different molecules not between atoms of the same molecule). The hydrogen bonds are attractions between the positive end of one hydrogen atom and the negative end of a small atom of other molecule (N, O, or F).
Since, nitrogen and oxygen are much more electronegative than hydrogen atoms, you conclude that:
- The two hydrogen atoms covalently bonded to the nitrogen atoms have considerably partial positive charge.
- The hydrogen atom covalently bonded to the oxygen atom also has a a relative large partial positive charge.
So, those are three ends of the molecule that can form hydrogen bonds with water molecules.
The hydrogen bondings are only possible when hydrogen is covalently bonded to N, O or F atoms.
<span>They are the combined effects of the gravitational forces exerted by the sun and moon on the rotation of the Earth </span>
Answer:
The two ice sheets on Earth today cover most of Greenland and Antarctica. During the last ice age, ice sheets also covered much of North America and Scandinavia. Together, the Antarctic and Greenland ice sheets contain more than 99 percent of the freshwater ice on Earth.
Hope this helps! (:
Answer:
The products have a higher heat content than the reactants.
Explanation:
The statement above is not true for an exothermic reaction because in an exothermic reaction heat is released to the surroundings. This simply means that the total energy of the products is less than that of the reactants.