Answer:
a) HNO3
b) 26.8g (3 s.f.)
c) 1.29g (3 s.f.)
Please see the attached pictures for full solution.
To balance an equation, ensure that the number of atoms for each element is the same on both sides.
Given :
Mass of O₂, m = 25.43 g.
To Find :
How many liters of gas will you have at STP.
Solution :
Molecular mass of O₂, M.M = 2 × 16 gram/mole
M.M = 32 gram/mole
Number of moles is given by :
n = m/M.M
n = 25.43/32 mole
n = 0.79 mole
Hence, this is the required solution.
Answer:
i dont know what you are saying
Explanation:
????????????
The problem is incomplete. However, there can only be two probable questions for this problem. First, you can be asked the individual partial pressures of each gas. Second, you can be asked the volume occupied by each gas. I can answer both cases for you.
1.
Let's assume ideal gas.
Pressure for N₂: 2 bar*0.4 = 0.8 bar
Pressure for CO₂: 2 bar*0.5 = 1 bar
Pressure for CH₄: 2 bar*0.1 = 0.2 bar
2. For the volume, let's find the total volume first.
V = nRT/P = (1 mol)(8.314 J/mol-K)(30 +273 K)/(2 bar*10⁵ Pa/1 bar)
V = 0.0126 m³
Hence,
Volume for N₂: 0.0126 bar*0.4 = 0.00504 m³
Volume for CO₂: 0.0126*0.5 = 0.0063 m³
Volume for CH₄: 0.0126*0.1 = 0.00126 m³
Just find Ag and F on periodic table, find g/mol for each one and add them together