The property of liquid oxygen that makes it especially difficult and potentially harmful to work with at home would be its cryogenic temperature. Liquid oxygen is being produced from the compression of oxygen gas to -196 degrees Celsius. As you can see, it has a very cold temperature that is why it used in cryogenics. Although liquid oxygen is non-toxic to humans, it would cause burns that are severe when being touched. Also, it would make certain materials brittle and unstable. Another property that makes it dangerous for use at home would be that it is very flammable. Proper handling is a must for this substance.
Answer:
The concentration of [Ca²⁺] is 8.47 x 10⁻³ M
Explanation:
We consider the solubility of hydroxyapatite,
Ca₁₀(PO₄)₆(OH)₂ ⇔ 10Ca²⁺ + 6PO₄³⁻ + 2 OH⁻
Assumed that there is <em>a</em> mol of hydoxyapatite disolved in water, yielding <em>10a</em> mol Ca²⁺ of and <em>6a</em> mol of PO₄³⁻
We also have Ksp equation,
Ksp = [Ca²⁺]¹⁰ x [PO₄³⁻]⁶ x [OH⁻]² = 2.34 x 10⁻⁵⁹
⇔ 10a¹⁰ x 6a⁶ x (5.30 x 10⁻⁶)² = 2.24 x 10⁻⁵⁹
⇔ 60a¹⁶ = 2.24 x 10⁻⁵⁹ / 5.30 x 10⁻¹²
⇔ a¹⁶ = 0.007 x 10⁻⁴⁷ = 7 x 10⁻⁵⁰
⇔ a =
= 8.47 x 10⁻⁴
Hence,
[Ca²⁺] = 10<em>a</em> = 8.47 x 10⁻³ M
Answer: Testing the electrical conductivity of an aqueous solution of the substance is the correct option.
Explanation:
An ionic substance is defined as the substance formed due to transfer of electrons(s) from one atom to another of the combining species.
For example, when a metal and a non-metal chemical combines then an electron will always be transferred from the metal to the non-metal.
Hence, a metal and non-metal always form an ionic bond.
It is known that water is a polar substance and polar or ionic substances readily dissolve in it.
So, when an ionic compound is dissolved in water then it will dissociate into ions. And, as electricity is the flow of ions or electrons hence, an aqueous solution of ionic substance is able to conduct electricity.
But an ionic compound in crystal form will not be able to conduct electricity because then ions are not present in free state.
Thus, we can conclude that testing the electrical conductivity of an aqueous solution of the substance, would be most useful in providing data to determine if the substance is an ionic compound.