Answer:
<em>To reverse the direction of an electric current, we simply reverse the voltage either automatically with the help of some switching circuitry or manually by changing the voltage source terminals connection. </em>
Explanation:
For electric current to flow, there must be a potential difference, usually referred to as the voltage. The electric current flow is analogous to the flow of water under the action of a pump, through a series of pipe connections. The voltage is similar to the driving action of the pump, and current flows the same way water flows. The resistance due to drag on the pipe wall is equivalent to electric resistance. For current to flow in the reverse direction, the voltage or rather, the potential difference is changed, causing the current to flow in the opposite direction. This can be done by switching the terminals of the voltage source, or by automatic means. The automatic switching can be done with a transistor based circuitry.
It magnifies light received from distant objects.
Answer: 585 J
Explanation:
We can calculate the work done during segment A by using the work-energy theorem, which states that the work done is equal to the gain in kinetic energy of the object:

where Kf is the final kinetic energy and Ki the initial kinetic energy. The initial kinetic energy is zero (because the initial velocity is 0), while the final kinetic energy is

The mass is m=1.3 kg, while the final velocity is v=30 m/s, so the work done is:

Green: nm 495–570. Yellow: nm 570–590. 590–620 nm for orange. Red: 620-750 nm (400–484 THz frequency)
Solids' molecules are strongly attracted to one another. As a result, the molecules are barely moving and tightly packed. Because of this, shape and volume are fixed.
The forces of attraction and repulsion in liquids are comparable. Compared to the solid state, they move a little bit more. They then assume the shape of the container while still having a fixed capacity.
The attraction forces between the molecules in gases are quite weak. They move quite freely and grow in an effort to fill as much space as they can. Consequently, their volume and shape vary (adopt the shape of the container).
You can learn more about states of the matter here:
brainly.com/question/18538345
#SPJ4
This attraction occurs from adhesion, also known as adsorption <span />