Answer:
The gravitational force on the moon is less than on Earth because the strength of gravity is determined by an object's mass. The bigger the object, the bigger the gravitational force. Gravity is pretty much everywhere. We just feel it in different ways depending on our state of motion.
Explanation:
Hope this helped!!
Answer:
A. Argon
Explanation:
It is a noble gas, a group which is not reactive.
Answer:
x = 6.94 m
Explanation:
For this exercise we can find the speed at the bottom of the ramp using energy conservation
Starting point. Higher
Em₀ = K + U = ½ m v₀² + m g h
Final point. Lower
= K = ½ m v²
Em₀ = Em_{f}
½ m v₀² + m g h = ½ m v²
v² = v₀² + 2 g h
Let's calculate
v = √(1.23² + 2 9.8 1.69)
v = 5.89 m / s
In the horizontal part we can use the relationship between work and the variation of kinetic energy
W = ΔK
-fr x = 0- ½ m v²
Newton's second law
N- W = 0
The equation for the friction is
fr = μ N
fr = μ m g
We replace
μ m g x = ½ m v²
x = v² / 2μ g
Let's calculate
x = 5.89² / (2 0.255 9.8)
x = 6.94 m
Answer:
0,00123 = 1,2*10^{-3}
Explanation:
To write down correctly the number 0,00123 in scientific notation, you take into account that the scientific notation demands that there in only one number after the comma ( , ). Furthermore, it is necessary that you move the comma to the right of the first number different of zero, in this case the number 1. To do this you move the comma three positions.
Then, you have to multiply the expresion 1.23 by 10 with an exponential -3 (because of the movement of the comma in three positions). That is:
0,00123 = 1,23*10^{-3}
But it is mandatory that nly one number can stay after the comma, so, you approximate the number three. In this case, the number is lower than 5, hence, you approximate 3 to 0.
Finally, you have:
0,00123 = 1,2*10^{-3}
Answer:
We conclude that the mass of a rock with a force of 500 N and an acceleration of 75 m/s² is 6.7 kg.
Hence, option D is correct.
Explanation:
Given
To determine
Mass m = ?
Important Tip:
-
The mass of a rock can be found using the formula F = ma
Using the formula

where
- a is the acceleration (m/s²)
now substituting F = 500, and a = 75 m/s² in the formula


switch sides

Divide both sides by 75

simplify

kg
Therefore, we conclude that the mass of a rock with a force of 500 N and an acceleration of 75 m/s² is 6.7 kg.
Hence, option D is correct.