Answer:
0.9 moles of Hg contain 5.418×10²³ atoms
Explanation:
As we know, Avogadro's number (NA) is the amount of particles that are contained in 1 mol → 6.02×10²³
Let's make a rule of three for this:
6.02×10²³ atoms are contained in 1 mol of Hg
5.418×10²³ atoms would be contained in (5.418×10²³ . 1) / NA = 0.9 moles
Yo sup??
CaCO3 + 2 HCl ---------> CaCl2 + H2O + CO2
This is the balanced chemical equation
Hope this helps
Answer:
2040 cm-1
Explanation:
The vibrations frequency is obtained from;
v=1/2πc √k/μ
Where;
k= force constant = 240kgs-2
μ= reduced mass = 1.627×10^-27 kg
c= speed of light= 3×10^10cms-1
v= 1/2×3.142×3×10^10√240/1.627×10^-27
v= 5.3×10^-12 × 3.84×10^14
v= 20.4×10^2
v= 2040 cm-1
Answer:

Explanation:
First reaction gives you the number of moles or the mass from Carbon and hydrogen
for carbon:


Analogously for hydrogen:
0.0310g
have 0.0034gH or 0.0034mol of H
In the second reaction you can obtain the amount of nitrogen as a percentage and find the mass of N in the first sample.

now

this is equivalet to 0.002mol of N
with this information you can find the mass of oxygen by matter conservation.

this is equivalent to 0.004molO
finally you divide all moles obtained between the smaller number of mole (this is mol of H)

and you can multiply by 5 to obtain: 
Answer:
The answer is in the explanation.
Explanation:
A solution is defined as the <em>homogeneous mixture </em>of a solute (In this case, NaCl) and the solvent (water).
To prepare 1L of the solution, the student can weigh the 3g of NaCl in the volumetric flask but need to add slowly water to dissolve the NaCl (That is very soluble in water). When all NaCl is dissolved the student must transfer the solution to the 1L volumetric flask. Then, you must add more water to the beaker until "Clean" all the solute of the beaker to transfer it completely to the volumetric flask.