Based on recommended amount of carbohydrate, a basketball player should consume about 17 - 34 ounces of gatorade g series during the hour-long game.
<h3>How many ounces of endurance formula gatorade g series, endurance formula should a basketball player consume during an hour-long game if it contains 14 grams of carbohydrate per 8 ounces?</h3>
Carbohydrates are food substances metabolized easily by the body to produce energy.
Given that the recommended amount of carbohydrate to consume to maintain performance is 30–60 g/h.
Also 14 grams of carbohydrate found in 8 ounces of the drink.
30 g of carbohydrate will be present in 30 × 8/14 = 17.1 ounces of gatorade g series
60 g of carbohydrate will be present in 60 × 8/14 =34.3 ounces of gatorade g series.
Therefore, a basketball player should consume about 17 - 34 ounces of gatorade g series during the hour-long game.
Learn more about carbohydrates at: brainly.com/question/797978
Answer:
It basically messes up the results
Explanation:
Pen ink consists of resins, pigments and other colouring dyes dissolved in appropriate solvents like propylene glycol, propyl alcohol and some other ethers. If the ball point pen is used to mark on the chromatography paper then these pigments will also move along with the solvent and interfere with the spots of our analyte.
If you use a ball point pen when doing a chromatogram, then the ink would separate as it is a mixture and run down the paper.
Graphite, or pencil lead however, is not an organic material and therefore will not be affected by common organic solvents used for thin-layer chromatography. Pen ink on the other hand will be readily absorbed by the solvent and will move up the plate.
Answer:
The value of x will be "1.4".
Explanation:
The given values are:
y = 9.6
z = 4.0
As we know,
The relation between x, y and z is:
⇒ 
and,
⇒ 
On substituting the given values, we get
⇒ 
⇒ 
Answer:
The concentration of this sodiumhydroxide solutions is 0.50 M
Explanation:
Step 1: Data given
Mass of sodium hydroxide (NaOh) = 8.0 grams
Molar mass of sodium hydroxide = 40.0 g/mol
Volume water = 400 mL = 0.400 L
Step 2: Calculate moles NaOH
Moles NaOH = mass NaOH / molar mass NaOH
Moles NaOH = 8.0 grams / 40.0 g/mol
Moles NaOh = 0.20 moles
Step 3: Calculate concentration of the solution
Concentration solution = moles NaOH / volume water
Concentration solution = 0.20 moles / 0.400 L
Concentration solution = 0.50 M
The concentration of this sodiumhydroxide solutions is 0.50 M
The answer is gonna be the last one :)