Answer is: Both a fluorine atom and a bromine atom gain one electron, and both atoms become stable.
Fluorine and bromine are in group 17 in Periodic table of elements. Group 17 (halogens) elements are in group 17: fluorine (F), chlorine (Cl), bromine (Br) and iodine (I). They are very reactive and easily form many compounds.
Halogens need to gain one electron to have electron cofiguration like next to it noble gas.
Fluorine has atomic number 9, it means it has 9 protons and 9 electrons.
Fluorine tends to have eight electrons in outer shell like neon (noble gas) and gains one electron in chemical reaction.
Electron configuration of fluorine: ₉F 1s² 2s² 2p⁵.
Electron configuration of neon: ₁₀Ne 1s² 2s² 2p⁶.
Bleh bleh bleh bleh bleh bleh bleh bleh and bleh
Since
potassium and phosphate is what we are to find for and they are both found in
the potassium phosphate solution, therefore we solve for this one first on the
basis of the phosphate.
The formula
for finding the volume given the concentration and number of moles is:
Volume =
number of moles / concentration in Molarity
Volume
potassium phosphate required = 30 mmol phosphate / (3 mmol / mL)
<u>Volume
potassium phosphate required = 10 mL</u>
This would
also contain potassium in amounts of:
Amount of
potassium in potassium phosphate = 10 mL (4.4 meg / mL)
Amount of
potassium in potassium phosphate = 44 meg
Therefore
the potassium chloride required is:
Volume of
potassium chloride = (80 meg – 44 meg) / (2 meg / mL)
<span><u>Volume of
potassium chloride = 72 mL</u></span>
Metals:
<span>Distinguishing luster (shine)
</span><span>Malleable and ductile (flexible) as solids
</span><span>Conduct heat and electricity
</span><span>Metallic oxides are basic, ionic
</span><span>Cations in aqueous solution
</span>
Nonmetals:
<span>Non-lustrous, various colors
</span><span>Brittle, hard or soft
</span><span>Poor conductors
</span><span>Nonmetallic oxides are acidic, compounds
</span><span>Anions, oxyanions in aqueous solution
</span>