1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pavel [41]
1 year ago
6

. Find their present ages. 6 years ago a man's age was six times the age of his son. 4 years hence, thrice his age will be equal

to eight times his son's age. What are their present ages?​
Mathematics
1 answer:
ddd [48]1 year ago
5 0

<u>The present age of the man is 36 years and his son is 11 years.</u>

Answer:

Solution given:

let the age of man be x.

and his son be y.

By question

x-6=6(y-6)

x=6y-36+6

x=6y-30. ......(1)

and

3(x+4)=8(y+4)

3x+12=8y+32

3x=8y+32-12

3x=8y+20. ...(2)

substituting value of x in equation 2 ,we get

3(6y-30)=8y+20

18y-90=8y+20

18y-8y=90+20

10y=110

y=110/10

y=11 years

again substituting value of y in equation 1 we get

x=6*11-30

x=66-30

x=36 years

You might be interested in
Please answer this question, i request
Jet001 [13]

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

3 0
2 years ago
2 2/5 x 2 = <br><br> 4.8<br> -4.8<br> 8.4<br> -8.4
Zinaida [17]

Answer:

c

Step-by-step explanation:

you have a calculator dont you?

5 0
2 years ago
Read 2 more answers
On a piece of paper, use a protractor to construct right triangle ABC with AB=3 in. , m∠A=90° , and m∠B=45° .
kirza4 [7]

Answer:

1. A. AC=3IN

2. D AND C

Step-by-step explanation:


7 0
3 years ago
Read 2 more answers
What is the measure of the exterior angle?
Nastasia [14]

Answer:

the measure of the exterior angle is 87 degrees.

8 0
2 years ago
Flip a coin three times. You will win $2 for each heads. What is the expected winning (expectation of your winning)
Romashka [77]

The three coins could land any these 8 ways:

HHH, HHT, HTH, HTT, THH, THT, TTH, TTT

P(3 heads) = 1 way out of 8  or 1/8

P(2 heads) = 3 ways out of 8 or 3/8

P(1 head) = 3 ways out of 8 or 3/8

P(0 heads) = 1 way out of 8 or 1/8

x=Winnings  P(x)  E(x)=x�P(x)

    $3      1/8      $.375

    $2      3/8      $.75

    $1      3/8      $.375

  -$10      1/8     -$1.25

---------------------------

Total expectation =   $ .25

7 0
2 years ago
Other questions:
  • Sasha went shopping and decided to purchase a set of bracelets for 25% off the regular price
    10·2 answers
  • Whats a product thats between 10 and 15 that unvolves multiplication of a fraction with a whole number?
    15·1 answer
  • Rewrite the following in standard form x-3=2x2-5
    5·1 answer
  • Examine the following and determine whether it shows exponential growth or
    12·1 answer
  • What year is this car
    6·1 answer
  • there are 495 students in a senior class. The cost of a senior trip is $120 per student. write an expression that can represent
    10·2 answers
  • The table shows values of a function f (x) . HELP
    5·1 answer
  • Helpp me please
    8·1 answer
  • Alex and Amber are both saving money for a
    10·1 answer
  • Four students are trying to find the rule that translates point N(–2, –4) to N prime (2, 4). Each student’s reasoning is shown b
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!