Answer:
The work done on the Frisbee is 1.36 J.
Explanation:
Given that,
Mass of Frisbee, m = 115 g = 0.115 kg
Initial speed of Frisbee, u = 12 m/s at a point 1 m above the ground
Final speed of Frisbee , v = 10.9674 m/s when it has reached a height of 2.00 m. Let W is the work done on the Frisbee by its weight. According to work energy theorem, the work done is equal to the change in its kinetic energy. So,

So, the work done on the Frisbee is 1.36 J. Hence, this is the required solution.
Answer:
a= 4.4×10 m/s^2
Explanation:
pressure P = E/c
Where, E = 100 W/m^2 intensity of light
c= speed of light = 3×10^8 m/s
P = 1000/ 3×10^8
P = 3.33×10^(-6) Pa
Force F = P×A
- P is the pressure and c= speed of light
F = 3.33×10^{-6}×6.65×10(-29)
= 2.22×10^{-6}
acceleration a = F/m = 2.22×10^{-6}/ 5.10×10^{-27}
a= 4.4×10 m/s^2
Answer:
i think u times them im not sure but then divide
Explanation: