Answer: The bottom of the ladder is moving at 3.464ft/sec
Explanation:
The question defines a right angle triangle. Therefore using pythagorean
h^2 + l^2 = 10^2 = 100 ...eq1
dh/dt = -2ft/sec
dl/ dt = ?
Taking derivatives of time in eq 1 on both sides
2hdh/dt + 2ldl/dt = 0 ....eq2
Putting l = 5ft in eq2
h^ + 5^2 = 100
h^2 = 25 = 100
h Sqrt(75)
h = 8.66 ft
Put h = 8.66ft in eq2
2 × 8.66 × (-2) + 2 ×5 dl/dt
dl/dt = 17.32 / 5
dl/dt = 3.464ft/sec
<span>A. An impulse of a force changes the momentum of a body and has the same units and dimensions as momentum.</span>
Answer:
- path differnce = 2.18*10^-6
- 1538 lines
Explanation:
- The path difference for the waves that produce the pattern of diffraction, is given by the following formula:
(1)
d: separation between slits = 0.50mm = 0.50*10^-3 m
θ: angle of a diffraction = 0.25°
Then, the path difference is:

- The maximum number of bright lines are calculated by using the following formula:
(2)
m: order of the bright
λ: wavelength = 650nm
The maximum bright is calculated for an angle of 90°:

The maxium number of bright lines are twice the previous result, that is, 1538 lines
First electromagnet
Explanation:
The first electromagnet is the strongest and it is stronger than the given electromagnet above.
An electromagnet is a temporary magnet made by passing current through a wire wounded round an iron core or metallic core.
- When current is passed through, the metal becomes magnetic.
- The strength of the electromagnet depends on the number of coil round the metal core and also the intensity of current passed through it.
- The higher the number of coils wounded round the metal core, the stronger the electromagnet that will be produced.
- Also, the higher the intensity of electricity passed through the wire, the stronger it is.
learn more:
Electromagnet brainly.com/question/2191993
#learnwithBrainly
Answer:
This material exhibits paramagnetism.
Explanation:
A paramagnetic material has these features: It doesn’t have any magnetic properties when placed in an external magnetic field, it gains and then loses the magnetic property as the external field is removed.
Such materials have magnetic moments oriented in random directions, thus making the net magnetic moment, zero. But when placed in an external field, they do possess a net magnetic moment. When the magnetic field is removed, they lose the magnetic property.
Thus, the material which produces no initial magnetic field when placed in a uniform magnetic field produces an additional internal magnetic field parallel to the original field. Also, it loses the magnetic properties as soon as the external magnetic field is removed. Then, the magnetism the material exhibits is paramagnetic.