Answer:
20.2 seconds
Explanation:
The airplane (and therefore the crate) initially has no vertical velocity, so v₀ = 0 m/s.
The crate is in free fall, so a = -9.8 m/s².
The crate falls downward, so Δx = -2000 m.
Find: t, the time it takes for the crate to land.
Δx = v₀ t + ½ at²
-2000 m = (0 m/s) t + ½ (-9.8 m/s²) t²
t = 20.2 s
It takes 20.2 seconds for the crate to land.
Answer:
about 19.6° and 73.2°
Explanation:
The equation for ballistic motion in Cartesian coordinates for some launch angle α can be written ...
y = -4.9(x/s·sec(α))² +x·tan(α)
where s is the launch speed in meters per second.
We want y=2.44 for x=50, so this resolves to a quadratic equation in tan(α):
-13.6111·tan(α)² +50·tan(α) -16.0511 = 0
This has solutions ...
tan(α) = 0.355408 or 3.31806
The corresponding angles are ...
α = 19.5656° or 73.2282°
The elevation angle must lie between 19.6° and 73.2° for the ball to score a goal.
_____
I find it convenient to use a graphing calculator to find solutions for problems of this sort. In the attachment, we have used x as the angle in degrees, and written the function so that x-intercepts are the solutions.
Answer:
The tension in the string is 16.24 N
Explanation:
Given;
mass of the sphere, m = 1.55 kg
initial velocity of the sphere, u = 2.81 m/s
final velocity of the sphere, v = 4.60 m/s
duration of change in the velocity, Δt = 2.64 s
The tension of the string is calculated as follows;
T = 1.55(0.678 + 9.8)
T = 1.55(10.478)
T = 16.24 N
Therefore, the tension in the string is 16.24 N
Answer:
A helium filled balloon floats forwards in a accelerating car because of the pressure difference between the front and the back of the car. When the car is accelerating, the air moves relitive to the car and the consequence is that the pressure in the back is slightly higher than in the front; which results in net force in forward direction.
hit that heart please leave brainliest and let me know if want me to answer or explain it in a different way :)
D=44.13, Horizontal velocity is unimportant. The time it takes the cannon ball to fall to the ground is the key to determining the height of the cliff. where that cannon is present.
The speed of any projectile travelling along a Horizontal velocity is known as the horizontal velocity. When a particle or object is launched into the air at an angle other than 90 degrees, it moves along the trajectory path and changes the shape of the curve to a parabolic one.
the speed at which velocity changes over time. Due to its magnitude and direction, acceleration is a vector quantity. The first derivative of velocity with respect to time or the second derivative of position with respect to time are further examples. This is called acceleration.
Distance to the ground is d = 1/2gt^2,
where g is the acceleration rate of gravity (9.80665 m/s^2)
and t = 3 secs.
d = .5×9.80665×9 = 44.13 m.
Learn more about horizontal velocity here
brainly.com/question/18084516
#SPJ4