Answer:
it ends when clouds above start to break apart. Some tornadoes only last seconds. Others can last much longer. They come in many shapes and sizes.
In the writing of ionic chemical formulas the value of each ion's charge is crossed over in the crossover rule.
Rules for naming Ionic compounds
- Frist Rule
The cation (element with a negative charge) is written first in the name then the anion(element with a positive charge) is written second in the name.
- Second rule
When the formula unit contains two or more of the same polyatomic ion, that ion is written in parentheses with the subscript written outside the parentheses.
Example: Sodium carbonate is written as Na₂CO₃ not Na₂(CO)₃
- Third rule
If the cation is a metal ion with a fixed charge then the name of the cation will remain the same as the (neutral) element from which it is derived (Example: Na+ will be sodium).
If the cation is a metal ion with a variable charge, the charge on the cation is indicated using a Roman numeral, in parentheses, immediately following the name of the cation (example: Fe³⁺ = iron(III)).
- Fourth rule
If the anion is a monatomic ion, the anion is named by adding the suffix <em>-ide</em> to the root of the element name (example: F = Fluoride).
The oxidation state of each ion is also important, thus in the crossover rule, the value of each ion's charge is crossed over.
Learn more about chemical formulas here:
<u>brainly.com/question/11995171</u>
#SPJ4
Answer:
The lowest possible frequency of sound is 971.4 Hz.
Explanation:
Given that,
Distance between loudspeakers = 2.00 m
Height = 5.50 m
Sound speed = 340 m/s
We need to calculate the distance
Using Pythagorean theorem




We need to calculate the path difference
Using formula of path difference

Put the value into the formula


We need to calculate the lowest possible frequency of sound
Using formula of frequency

Put the value into the formula


Hence, The lowest possible frequency of sound is 971.4 Hz.
Answer:
I think the answer is B, I am not for sure
Answer:

Explanation:
given data:
density of water \rho = 1 gm/cm^3 = 1000 kg/m^3
height of water = 20 cm =0.2 m
Pressure p = 1.01300*10^5 Pa
pressure at bottom



= 1.01300*10^5 - 1000*0.2*9.8
= 99340 Pa
h_[fluid} = 0.307m

