<u>Part (a)</u>
The variable y is the dependent variable and the variable x is the independent variable.
<u>Part (b)</u>
The cost of one ticket is $0.75. Therefore, the cost of 18 tickets will be:
dollars
Now, we know that Kendall spent her money only on ride tickets and fair admission and that she spent a total of $33.50.
Therefore, the price of the fair admission is: $33.50-$13.50=$20
If we use y to represent the total cost and x to represent the number of ride tickets, the linear equation that can be used to determine the cost for anyone who only pays for ride tickets and fair admission can be written as:
......Equation 1
<u>Part (c)</u>
The above equation is logical because, in general, the total cost of the rides will depend upon the number of ride tickets bought and that will be 0.75x. Now, even if one does not take any rides, that is when x=0, they still will have to pay for the fair admission, and thus their total cost, y=$20.
Likewise, any "additional" cost will depend upon the number of ride tickets bought as already suggested. Thus, the total cost will be the sum of the total ride ticket cost and the fixed fair admission cost. Thus, the above Equation 1 is the correct representative linear equation of the question given.
$21 for 3 pounds of steak the rate would be 7 because 21/3= 7
Step-by-step explanation:
(1, -3). (3, 0)
(0 + 3)/(3 - 1) = 3/2 is the slope
Answer:
e = 1.04
Step-by-step explanation:
To find e, we apply the sine rule
e/sineE = f/sineF
e/sine55 = 1.2/sine109
e/0.8192 = 1.2/0.9455
0.9455e = 1.2 x 0.8192
e = 0.9830/0.9455
e = 1.0397
to nearest tenth = 1.04inch
Let
A = event that the student is on the honor roll
B = event that the student has a part-time job
C = event that the student is on the honor roll and has a part-time job
We are given
P(A) = 0.40
P(B) = 0.60
P(C) = 0.22
note: P(C) = P(A and B)
We want to find out P(A|B) which is "the probability of getting event A given that we know event B is true". This is a conditional probability
P(A|B) = [P(A and B)]/P(B)
P(A|B) = P(C)/P(B)
P(A|B) = 0.22/0.6
P(A|B) = 0.3667 which is approximate
Convert this to a percentage to get roughly 36.67% and this rounds to 37%
Final Answer: 37%