<u>Answer:</u>
The final velocity of the two railroad cars is 1.09 m/s
<u>Explanation:</u>
Since we are given that the two cars lock together it shows that the collision is inelastic in nature. The final velocity due to inelastic collision is given by
where
V= Final velocity
M1= mass of the first object in kgs = 12000
M2= mas of the second object in kgs = 10000
V1= initial velocity of the first object in m/s = 2m/s
V2= initial velocity of the second object in m/s = 0 (given at rest)
Substituting the given values in the formula we get
V = 2×12000 + 0x100012000 + 10000= 2400022000= 1.09 m/s
Which is the final velocity of the two railroad cars
The latin name for hydra constellation is "Water snake"
Answer:
New pressure is 0.534 atm
Explanation:
Given:
Initial volume of the gas, V₁ = 250 mL
Initial pressure of the gas, P₁ = 1.00 atm
Initial temperature of the gas, T₁ = 20° C = 293 K
Final volume of the gas, V₂ = 500 mL
Final pressure of the gas = P₂
Final temperature of the gas, T₁ = 40° C = 313 K
now,
we know for a gas
PV = nRT
where,
n is the moles
R is the ideal gas constant
also, for a constant gas
we have
(P₁V₁/T₁) = (P₂V₂/T₂)
on substituting the values in the above equation, we get
(1.00 × 250)/293 = (P₂ × 500)/313
or
P₂ = 0.534 atm
Hence, the <u>new pressure is 0.534 atm</u>
We make a graphic of this problem to define the angle.
The angle we can calculate through triangle relation, that is,
With this function we should only calculate the derivate in function of c
That is the rate of change of .
b) At this point we need only make a substitution of 0 for c in the equation previously found.
Hence we have finally the rate of change when c=0.
1st Law: Objects that are in motion tend to stay in motion. This motion can change with external forces.
<span>If you were to stop pedaling on bike while in motion, you will notice that you will keep moving. This is because a moving body (you) has inertia. If there wasn't any friction between the tires and the ground, between the axles and wheel, any air resistance, or any other force that acts against you, then you could be coasting indefinitely! </span>
<span>2nd Law: Force is equal to the mass times acceleration. </span>
<span>When you pedal, you are applying a force onto the pedal. This force is then translated through tension to apply torque onto the wheel. Turning the wheel will make you accelerate in the lateral direction. </span>
<span>3rd Law: For every action, there is an equal and opposite reaction. </span>
<span>Without this, you could pedal and pedal, but you will be not go anywhere! It is essentially the friction between the tires and the ground that propels you forward. If the ground did not apply to the tire the same amount of force that the tire was applying to the ground, the tire would not "catch" and no friction would be applied. And if there was no third law, the weight of you and your bike would "sink" into the ground because the ground would not be applying a normal force back onto you.
hope this helps and if you have any questions just hmu and ask :)</span>