Answer:
Surface 1 is blacktop, Surface 2 is gravel, and Surface 3 is ice.
Explanation:
Hope this helps! :]
Answer:
The magnitude of the average angular acceleration of the disk is
.
Explanation:
Given that,
Angular velocity, 
The disk comes to rest, 
Time, t = 0.234 s
We need to find the magnitude of the average angular acceleration of the disk. It is given by change in angular velocity per unit time. So,

So, the magnitude of the average angular acceleration of the disk is
.
Answer:
The options are
A.on racetracks
B.in real-world conditions
C.in flooded environments
D.on closed courses
The answer is B. In real world conditions
The public is not yet able to purchase cars powered by hydrogen fuel cells because engineers have to determin
how the cars perform based on real world conditions.
This will ensure they encounter the real and first hand experiences about the challenges and also the advantages associated with using this type of fuel.
Answer:
The electron cloud
Explanation:
Metallic bonds result from interaction of positively charged metal ions with free valence electrons which now forms an electron cloud around the metal ions. Electrostatic interaction between the metal ions and the electron cloud holds the metal ions together in the metallic bond.
Answer:
its correct no need to change anything :))