This is a Fraunhofer single slit experiment, where the light passing through the slit produces an interference pattern on the screen, and where the dark bands (minima of diffraction) are located at a distance of

from the center of the pattern. In the formula, m is the order of the minimum,

the wavelenght,

the distance of the screen from the slit and

the width of the slit.
In our problem, the distance of the first-order band (m=1) is

. The distance of the screen is D=86 cm while the wavelength is

. Using these data and re-arranging the formula, we can find a, the width of the slit:
Answer:
simple
Explanation:
<h3>CONCAVE MIRRORS AND LENSES</h3>
<h3>f= negative</h3>
<h3>CONVEX MIRRORS AND LENSES</h3><h3 /><h3>f= positive</h3>
<h3>PLEASE FOLLOW ME AND MARK IT BRAINLIEST</h3>
Answer:
T= 1 s
Explanation:
Given that
When x= cm ,T= 1
we know that time period of spring mas system given as

T= Time period
m= mass
k=spring constant
So from above equation we can say that time period of system does not depends on the value of x.
So when x= 10 cm ,still time period will be 1 s.
T= 1 s
Radial acceleration is given by

where

then

Now

Using the relation


Putting into rpm
7.Jupiter is the largest planet in our solar system at nearly 11 times the size of Earth and 317 times its mass.
When we look at Jupiter, we're actually seeing the outermost layer of its clouds.
The Great Red Spot is a storm in Jupiter's southern hemisphere with crimson-colored clouds that spin counterclockwise at wind speeds
8. 58,232 km
The second largest planet in the solar system
Surface. As a gas giant, Saturn doesn't have a true surface. The planet is mostly swirling gases and liquids deeper down.
Saturn's rings are thought to be pieces of comets, asteroids or shattered moons that broke up before they reached the planet,
9. Unlike the other planets of the solar system, Uranus is tilted so far that it essentially orbits the sun on its side, with the axis of its spin nearly pointing at the star.
Uranus' atmosphere is mostly hydrogen and helium, with a small amount of methane and traces of water and ammonia.
As an ice giant, Uranus doesn't have a true surface. The planet is mostly swirling fluids. While a spacecraft would have nowhere to land on Uranus, it wouldn't be able to fly through its atmosphere unscathed either. The extreme pressures and temperatures would destroy a metal spacecraft.
10. 24,622 km
Neptune has an average temperature of -353 Fahrenheit (-214 Celsius).
Neptune's atmosphere is made up mostly of hydrogen and helium with just a little bit of methane.